(4) (1)
 CSCE/ELE 2114: Digital Design
 Gate Design
 Reading: Chapter 2.7-2.8, 3.6, 4.5-4.6

Courtesy of Dr. Brown, Dr. Vranesic, Dr. Harris, Dr. Zhou and Dr. Hadimioglu

Basic Gates

\square We have learned INV, NAND2, NOR2 gates

- What about XOR/XNOR?
-What about any boolean function?

Inverters

Inverters can also be implemented with a NAND or NOR gate.

NOT

$\mathbf{F}=\overline{\mathbf{A}}$

NAND

$F=\overline{\mathbf{A} \cdot \mathbf{1}}=\overline{\mathbf{A}}$

NAND

$$
\begin{array}{l|l|l}
A & A & F \\
\hline 0 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

$\mathbf{F}=\overline{\mathbf{A A}}=\overline{\mathbf{A}}$

NOR

$\mathbf{F}=\overline{\mathbf{A}+\mathbf{A}}=\overline{\mathbf{A}}$
\bar{A}

XOR Gate

-87 design

$$
C=A \bar{B}+\bar{A} B
$$

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

XNOR Gate

-XNOR=XOR+INV

- 10T design

-8T Design

$C=A B+\bar{A} \bar{B}$

A	B	C
0	0	1
0	1	0
1	0	0
1	1	1

Non-Inverting Operators

BUFFER

A $A=A$

Inverting Operators

 (ilik)| NAND | A | | F | NOR | A B
 0 0 | | 1 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 1 | | | | | |
| | 0 | | 1 | A- | 01 | | 0 | |
| | 1 | | 1 | B | | | | |
| $B-\sim-$ | | | | | 1 | | 0 | |
| $\begin{gathered} F=\overline{A B} \\ 4 \text { transistors } \end{gathered}$ | | | | $F=\overline{\mathbf{A}+\mathbf{B}}$
 4 transistors | | | | |
| | | | | | | | | | | | | |
| NOT | A | | | XNOR | A B | | | F |
| | | | | | | | 0 | 1 |
| | 0 | | | | | | | 0 |
| $\mathrm{A}->\mathrm{O}$ | 1 | | | B | | | 0 | 0 |
| | | | | | | | | |
| $\mathbf{F}=\overline{\mathbf{A}}$ | | | | $F=\mathbf{A B}+\overline{\mathbf{A}} \overline{\mathbf{B}}$ | | | | |
| 2 transistors | | | | 8 transist | | | | |

A Complex Three Input Gate

Boolean Functions to Transistors

\square Most Boolean functions can be implemented using switches
\square The basic rules are as follows

- Pull-up section of switch network
- Use complements for all literals in expression
- Use only pMOS devices
- Form series network for an AND operation
- Form parallel network for an OR operation
- Pull-down section of switch network
- Use complements for all literals in expression
- Use only nMOS devices
- Form parallel network for an AND operation
- Form series network for an OR operation

Example Pull-Up

 (1il)\square To implement the Boolean function given below, the following pull-up network could be designed.

- Notice how AND and OR become series and parallel circuits, respectively.

Example Pull-Down

To complete the switch design, the pull-down section for the Boolean function must also be designed.

$$
\mathbf{F}=\mathbf{E}(\overline{\mathbf{A}} \mathbf{D}+\overline{\mathbf{B}}(\mathbf{A}+\overline{\mathbf{C}}))
$$

Completed Example

\square Putting the pull-up and pull-down pleces together gives the following CMOS switch implementation of the Boolean function.

Gate Networks

Gate network consists of

- Gates
- External inputs and outputs
- Connections
\square Gate inputs
- Only one connection to input is allowed
- Connected to constant value (0 or 1)
- Connected to an external input
- Connected to a gate output
\square Gate outputs
- Output load should not be greater then the fanout factor for the gate and technology being used.

Valid/Invalid Networks

Valid or Invalid?

Valid or Invalid?

Valid or Invalid?

Valid or Invalid?

Boolean Functions to Gates

Implement the following Boolean function using logic gates

$$
F=\overline{\overline{((A+B \bar{C}) D})+C+D E}
$$

\square Possible solution:

- $\mathbf{3} \times \mathbf{6}_{\mathrm{AND}}+\mathbf{3} \times \mathbf{6}_{\mathrm{OR}}+\mathbf{3} \times \mathbf{2}_{\mathrm{NOT}}=\mathbf{4 2}$ transistors for CMOS technology.

Using Specific Gates

\square Because of various implementation reasons, It may be desired to use only specific sorts of logic gates in an implementation.

- For instance, many CMOS implementations use only NAND gates. Some implementations use on NOR gates.
- This can be done in a number of manners. One is to rework the Boolean functions so that only the specific gates desired are used.
- May reduce the physical number of transistors required if the appropriate types of gates are used.
\square NAND and NOR are universal gates
- AND and OR need INVs to implement any function

Demorgan's Square

DeMorgan's Square

Two Level Synthesis (SOP)

Sum of Products

- Using only NAND gates

- We create many bubbles with NOR gates

Two Level Synthesis (POS)

 (ilik)
\square Product of Sums

- NOR gates only
- We will create many bubbles with NAND gates

Mixed Logic

\square Mixed logic is one approach that makes it easier to redesign a logic network to use desired types of gates.

Mixed logic is also self-documenting

- This means that you can see what the original designer started with and see how the logic network was changed for the implementation.
- The idea behind mixed logic is to diagram out the logic network from the Boolean equations given, and then make small changes to the logic network to achieve desired results for implementation.

Mixed Logic Procedure

\square Mixed logic is one approach that makes it easier to redesign a logic network to use desired types of gates
\square The procedure for performing mixed logic conversions:

- Draw the logic network for the given Boolean equation.
- Use only AND and OR gates.
- Replace all complements with a bar (no bubbles or inverters yet!)
- Add complement bubbles and NOT gates within the network to appropriately convert logic gates to desired gate sets.
- The rules in adding complement bubbles and NOT gates
- All bubbles must cancel each other out
- Exactly one and only one bubble needed on each bar
- Extract the gates from the circuit, ignoring bars

Example 1

Implement the following Boolean function using only NAND gates first and then using only NOR gates.

$$
F=A B+\bar{C} D
$$

\square Solution: Start by drawing the logic network for the Boolean function with the complements as bars.

Example 1 using NAND

\square Step 2: Add bubbles to form NAND gates

\square Step 3: Add invertors to cancel out bubbles

Example 1 using NAND

Solution: This logic network now only uses NAND gates and INVs

$$
F(A, B, C, D, E)=\overline{\overline{A B} \overline{\bar{C} D}}
$$

Example 1 using NOR

\square Step 2: Add bubbles to form NOR gates (step 1 is the same)

\square Step 3: Add invertors to cancel out bubbles

Example 1 using NOR

\square Solution: This logic network now only uses NOR gates and INVs

$$
F(A, B, C, D, E)=\overline{\overline{\overline{\bar{A}+\bar{B}}+\overline{C+\bar{D}}}}
$$

Example 2

\square Implement the following Boolean function using NAND gates

$$
F=\overline{((A+B \bar{C}) D})+C+D E
$$

- Step1: Start by drawing the logic network for the Boolean function with the complements as bars.

Example 2

\square Step 2: Add bubbles
 A

\square Step 3: Add Invertors to balance bubbles

Example 2

 4ilis
\square Step4: This logic network now only uses NAND gates and INVs

