
Mixed-Signal Computer-Aided Deisgn (MSCAD) Laboratory
Energy-Efficient Electronics and Design Automation (E3DA) Laboratory

PowerSynth User Manual
Version 2.1

https://mscad.uark.edu/
https://e3da.csce.uark.edu/

Contents

1 Introduction 2
1.1 Executive Summary . 2

1.1.1 PowerSynth Introduction . 2
1.1.2 About Version 2.1 . 2

1.2 Organization . 3
1.3 PowerSynth 2 Architecture . 3
1.4 User Interfaces and Design Input . 3
1.5 Layout Engine . 4
1.6 Performance Evaluation Models . 6
1.7 Design Optimization and Solution Export . 6

2 Using PowerSynth v2.1 7
2.1 Installation and Usage . 7
2.2 Requirements . 7

2.2.1 Technology Library Content . 7
2.2.2 Initial Layout Description . 11
2.2.3 Constraints . 20

2.3 PowerSynth 2.0 GUI Introduction . 22
2.4 Walk-Through Three Examples . 32

2.4.1 2D MCPM Layout Optimization . 32
2.4.2 3D MCPM Layout Optimization . 44
2.4.3 Converter Layout Optimization (ongoing work) 49

3 PowerSynth-Related Publications 52
3.1 Useful Links . 54

4 Authors 54
4.1 Graduate Research Assistants/ Graduates . 55
4.2 Supervisors . 55

1

1 Introduction

1.1 Executive Summary

1.1.1 PowerSynth Introduction

PowerSynth is an electronic design automation (EDA) tool that can synthesize and optimize multi-
chip power module (MCPM) layouts with significantly faster than any commercial tools. PowerSynth
currently performs multi-objective optimization to produce Pareto-front solutions to the proper
placement of power semiconductor device die and the routing of metal traces on ceramic substrates.
The tool accounts for temperature distributions and electrical parasitics as a function of the layout
geometries that it considers. This tool has been hardware-validated. Continued research on this
project will further elaborate the capabilities by extending the work to greater fidelity in thermal,
electrical, and mechanical domains.

1.1.2 About Version 2.1

As a part of PowerSynth continuous research and development, this version (v2.1) offers a command
line interface and graphical user interface (GUI) to both Linux and Windows machines to the users
with a significant improvement in layout representation and generation methodology. Some of the
major features in this version include:

• Implement hierarchical optimization for layout generation (version 2.1).

• Add Multi-Objective Particle Swarm Optimization (MOPSO) as a new optimization algorithm
for layout generation (version 2.1).

• Extended layout handling from module to converter design (version 2.1). It is noted that the
converter layout design is in the experimental phase.

• New modular and hierarchical software architecture for PowerSynth 2.0 (shown in Figure 1).

• Both graphical user interface (GUI) and command-line interface (CLI) for the user’s flexibility.

• Generic layout representation technique for complex (2D/2.5D/3D) geometry handling.

• Hierarchical constraint-aware, generic, efficient, and scalable layout generation methodology.

• Heretogeneous components handling.

• Both intra-layer (wire bond) and inter-layer (via) interconnects handling capability.

• Voltage-current dependent intra-layer (2D) reliability constraints handling.

• Arbitrary number of passive layers in the layer stack.

• Initial(single) layout performance evaluation.

• Hardware-validated partial element equivalent circuit (PEEC) based built-in model for
2D/2.5D layouts and FastHenry for 3D layouts electrical performance evaluation.

• Hardware-validated, ParaPower thermal model.

• Optimization algorithm options: randomization and genetic algorithm (NSGAII).

• Most of the state-of-the-art packaging technology (2D/2.5D/3D wire-bonded, wire bondless,
hybrid) can be considered for optimization.

2

Object-based layout

representation

MFR Design

Kit (MDK)

Embedded scripting

environment
Data Input

Constraint

(DRC)
Connectivity

(LVS)

Layout

Generation

Layout

Synthesis

Layout

Evaluation

Electrical

model

Thermal

model

Reliability

model

Partial Discharge

model

Genetic

Algorithms
Optimization

Toolbox

Machine-

Learning

Simulated-

Annealing

Pre/Post-Layout

Optimization

Export &

Simulation

Solution

Database

Netlist

Exporting

Simulation

Export

Export

Functions

G
ra

p
h

ic
a

l U
s
e

r In
te

rfa
c
e

 (G
U

I)

C
o

m
m

a
n

d
 L

in
e

 In
te

rfa
c
e

 (C
L

I)

E
x
te

rn
a

l T
o

o
ls

Design Flow PowerSynth 2 Core: 2D/2.5D/3D Designs, Python 3.10, QT 6.5, MATLAB 2022b, Win/Linux

Figure 1: PowerSynth 2 architecture

1.2 Organization

After a brief introduction to PowerSynth 2 architecture, this document introduces the GUI workflow.
This document will show the user how to prepare the necessary files, and parameters for using this
version. Then, this document walks the user through the steps to optimize a sample 2D half-bridge
power module, a 3D half-bridge power module, and a converter design.

1.3 PowerSynth 2 Architecture

PowerSynth 2 architecture is shown in Figure 1. Compared to PowerSynth 1, the new architecture is
a module-based one. It has multiple design layers, and each layer has a flexible API to communicate
within or outside the tool. The tool has two fundamental parts: A core that contains the built-in
algorithms, methodologies, and modeling techniques; External tools that include commercial tools
or models developed by other research groups, which are linked through APIs developed by the
authors. This architecture is scalable and can be extended toward cabinet-level optimization.

1.4 User Interfaces and Design Input

PowerSynth v2.1 has both GUI-based interactive mode and CLI-based unattended mode to support
Windows and Linux compatibility. The command-line interface works on user input through the
terminal, which uses a macro script describing the necessary parameters to perform the optimization
flow. Besides, there is an interactive GUI for the users. The main window of the user interface
provides two main flows: (a) Creating a new project from an existing layout; (b) Running a project
using the macro script already prepared. Users can modify the material library, layer stack, and
design constraints through the GUI. Then, the layout generation/optimization setup window can
run PowerSynth 2 in three different modes: performing performance evaluation of the initial layout,
generating layout solutions only, and optimizing layout solutions based on the performance models.
For optimization/evaluation mode, the user needs to set up necessary files and parameters through
different model setup windows. Once the necessary parameters are defined, the layout optimization
process begins, and results are shown in the solution browser. Finally, the user can choose an

3

individual solution from the solution space and export both individual and complete solution space
for further processing.

PowerSynth 2 requires an initial description of the technology that contains the layer stack, power
devices, substrates, connectors, heat spreaders, wire bonds, and via information. As an umbrella
module, the built-in manufacturer design kit (MDK) contains a library of materials and other tech-
nology information similar to the process design kit (PDK) in Very Large-Scale Integration (VLSI).
An interface is built to interact with MDK so that users can update the libraries. Besides, the initial
placement of the devices, leads, and routing of the traces information is taken through a hierarchi-
cal geometry description script, which is represented through an object-based data structure. An
embedded scripting environment can be used to accelerate the layout geometry processing.

1.5 Layout Engine

The significant improvements with the hierarchical constraint-aware layout engine are:

• An interactive constraint input feature which is helpful for user to specify or modify design
constraint values to have different layout structures.

• Three types of layout generation capability: minimum-sized layout, variable floorplan sized,
and fixed floorplan sized.

• As the engine takes into account of all design constraints in the layout generation phase, it
always generates 100% manufacture-able solutions.

• The updated layout engine can incorporate different types of optimization algorithms (i.e.,
genetic algorithm, particle swarm, randomization)

• This layout engine treats each component as rectangle, so geometrical complexity is not a
problem.

• This engine can process broader range of layouts even considering heterogeneous components
(e.g. passive components, sensors, etc.).

• As the updated layout engine is constraint-aware, different types of constraints can be declared :
design constraints, reliability constraints, user-defined constraints. Generated solutions always
satisfy all the given constraints.

• Scalable, efficient algorithms have a linear time complexity irrespective of layout types
(2D/2.5D/3D).

• 2D/2.5D/3D layouts with most of the state-of-the-art (SOTA) packaging technologies (wire-
bonded, wire bondless, hybrid, etc.) can be optimized using the updated algorithms.

Methodology
From the user-defined initial input script, using corner stitch data structure (used in Magic VLSI
tool), a collection of rectangular tiles are stored in a hierarchical tree structure. Based on design
constraints, constraint graphs (popular in VLSI floorplan compaction) are created for each corner-
stitched plane. Two types of constraint graphs are consdiered: horizontal constraint graph (HCG)
and vertical constraint graph (VCG) for maintaining horizontal and vertical relationship among
components. These constraints are evaluated using the longest path algorithm and the results are
propagated through the tree. Bottom-up constraint propagation and top-down location propaga-
tion algorithms are implemented to generate solution. PowerSynth previous versions are restricted

4

with handling 2D/2.5D layouts only. Therefore, the constraint graphs creation are performed by
one-to-one mapping with the cornr-stitching tree structure. Howeve, in PowerSynth 2 inter-layer
connectivity has been considered by introducing two types of via structures: through DBC type
and port type. To handle the constraints across different layers, abstract nodes are generated in the
hierarchy tree, which do not have any corner stitch plane but have constraint graphs. Interfacing
layers are introduced for handling these via type connections, which have been the key updates from
previous version (v1.9). Detail algorithms can be found in. Some concepts associated with layout
generation are described as follows:

• Constraints: Two types of constraints are considered: (a) design constraints, (b) reliability
constraints.

(a) Design Constraints: These are standard design rules from the manufacturer. Three
types of design constraints are considered.

1. Dimension Constraints: Here, minimum width along x-axis (Min Width), minimum
width along y-axis (Min Height) and minimum enclosure (Min Enclosure) are specified
for each type of component.

2. Spacing Constraints: In this table, minimum spacing values between every pair of
components are declared.

3. Enclosure Constraints: When a component is placed on top of another component,
there may be some minimum enclosure value. So, this table has all possible minimum
enclosure values.

(b) Reliability Constraints: These constraints are user-defined based on the high-voltage-
current applications. To minimize partial discharge phenomena, and increase the reliability of
the power module, user can define voltage-dependent minimum spacing and current-dependent
minimum width constraints.

• Operating Modes: Based on the evaluation of the constraint graphs, there are three modes
of operation (shown in Table 1).

Table 1: Summary of operating modes

Mode Purpose Evaluation Methodology
0 Minimum sized layout Minimum constraint values

1 Variable floorplan layouts All Weights are randomized with minimum constraints.
No maximum constraints

2 Fixed floorplan layouts All Weights are randomized with minimum constraints.
Some have maximum constraints

– Minimum Size Layout: This layout is generated using all minimum constraint values.
So, this layout reflects maximum possible power density for a layout. As this is the
minimum sized solution, it is electrically optimized but thermal performance is so poor.

– Variable Size Layout: If this mode is selected, all constraint values are randomized
and new layout solution is generated. User can generate arbitrary number of valid layout
solutions with different floorplan size.

– Fixed Size Layout: All edge weights are randomized within given area to generate
arbitrary number of solutions. As floorplan size is always fixed there is less variation in
this mode than the previous one.

5

1.6 Performance Evaluation Models

As WBG devices can switch faster at higher voltage and current, electrical parasitics in the MCPM
layout must be minimized to achieve the target circuit performance. With the increased density
in a 3D MCPM layout design, the parasitic loop inductance is significantly reduced compared to
its 2D counterparts. However, as the 3D layout solution is more compact, ensuring thermal and
mechanical reliability becomes challenging. Therefore, electro-thermo-mechanical performance and
reliability optimization are required before fabricating a module. Available multi-physics or FEA-
based analysis tools can be used for capturing these performances. However, these methods are
not efficient to be used in the optimization loop due to long runtime. To address these issues,
PowerSynth 2 is equipped with reduced-order electrical and thermal models, which are fast and
quite accurate compared to FEA tools. The electrical model performs resistance, capacitance, and
inductance evaluation. Multi-level APIs have been developed inside the tool to leverage the existing
electrical, thermal, and mechanical models from other research groups or companies. In this version,
hardware-validated PEEC model and FastHenry from FastFieldSolvers is used for loop parasitics
extraction of 2D/2.5D layouts, and 3D layouts, respectively. And ParaPower from Army Research
Lab has been enabled for thermal evaluation.

1.7 Design Optimization and Solution Export

For providing optimization options, PowerSynth 2 has a genetic algorithm (NSGAII) and built-in
randomization algorithm framework. Currently, PowerSynth 2 flow users can choose any available op-
tions for performing electro-thermal optimization. A comparison study between randomization and
genetic algorithm shows that genetic algorithm can converge faster to the Pareto-optimal solution
set for a given number of generations. Though randomization provides little guidance toward opti-
mization objectives, it can explore a larger solution space and potentially find better solutions with
an acceptable runtime overhead. Once the optimizer generates the solution space, a non-dominated
sorting is applied to get the Pareto-optimal solutions. In this version, along with the Pareto-front so-
lutions, an entire solution space is also reported after optimization. Moreover, for each solution, the
layout geometry is also exposed in a CSV file containing each component’s coordinates, width, and
length. This information helps a designer to regenerate the geometry script for the solution layout.
Exporting a complete distributed parasitic netlist with RLC elements is one of the killer features.
The exported netlist can back-annotate the circuit schematic to perform re-simulation, completing
the round-trip engineering design loop before fabrication. Finally, the optimized solution can be
fabricated to validate and fine-tune models through physical measurements.

6

Figure 2: (a) Circuit schematic of power module, Various MCPM layout structures: (b) 2D half-
bridge, (c) 2.5D full-bridge, and (d) 3D with double-sided cooling or embedded cooling

2 Using PowerSynth v2.1

2.1 Installation and Usage

PowerSynth v2.1 can be installed on Linux and Windows machines. PowerSynth v2.1 requires Mat-
lab to run the ParaPower thermal model. The package uses Python3.10 and assumes Matlab 2022b
is installed at the default location. More details about the installation of each package can be found
at https://github.com/e3da/PowerSynth2-pkg.

For Windows:
After installation, PowerSynth2-GUI and PowerSynth2-CLI shortcuts are available to use. To use
GUI click on PowerSynth2-GUI and to use CLI after clicking on PowerSynth2-CLI use this command
to run the PowerSynth:

. \ python . exe . \ pkg\bin \PowerSynth2 . py . \ pkg\work\Sample_Designs \2D_Case_3\
macro_script . txt

For Linux:
After installation, to use GUI inter PowerSynyh command, and to use CLI, first use this command
to set the environment:

setenv PATH ./ PowerSynth2 .0/ bin :PATH

Then, use the below command to run the PowerSynth:

PowerSynth2 . / PowerSynth2 .0/ pkg/work/Sample_Designs /2D_Case_3/macro_script . txt

2.2 Requirements

2.2.1 Technology Library Content

To design a standard 2D/2.5D/3D power module (shown in Figure 2), the key elements are as
follows:

7

https://github.com/e3da/PowerSynth2-pkg

1. Baseplate
2. Plain (for 2D/2.5D) or Through ceramic via connected (for 3D) Substrate (Direct Bonded Copper
(DBC): Back-side metal, Ceramic, Top-side metal)
3. Components (Devices: MOSFETs, Diodes, IGBTs, Capacitors, etc.)
4. Connectors (Leads: power and signal)
5. Bonding wires, metallic posts (via).

To describe the structure and layout of the module, the required information are taken through
several files. The files associated with these elements are as follows:
1. Layer stack (.csv file)
2. Parts (.part file)
3. Wires (.wire file)
Each file content is described below:

1. Layer stack: This file provides the dimensions, material information about baseplate, and
substrate. These information are taken input as a CSV file.

Figure 3: Sample layer stack of a (a) 3D module, (b) 2D module

A sample 2D and 3D layer stack are shown in Figure 3(a), and (b), respectively. The 3D layer
stack file contents are shown in Table 2. Any layer stack file has nine columns:
1. ID: An integer to uniquely identify each layer.
2. Name: Each layer needs to have a name (i.e., B1 for Baseplate layer 1, M1 for substrate
backside metal 1, D1 for dielectric layer 1 of the substrate, I1 for interconnect layer 1 of the
substrate, and C1 for component layer 1). Since this version supports multi-layer stacked
DBC, all layers except the component layer can be multiple.
3. Origin: Defines reference X and Y coordinate as Z coordinate is always considered to be

8

starting at 0. All units are in mm. 4. Width: Defines width of each layer in mm.
5. Length: Defines length of each layer in mm.
6. Thickness: Defines thickness of each layer in mm.
7. Material: Name of the corresponding layer material (needs to be same as in material library.
8. Type: Two types are allowed: p for passive and a for active. Only component layer is an
active layer and rest of the layers are passive.
9. Electrical: This field is for electrical performance evaluation. Here, F for floating, G for
ground, D for dielectric, S for signal, and C for component.

More examples are available in the ‘Sample_Designs’ directory of the package.

Table 2: Content in a layer stack file

ID Name Origin Width Length Thickness Material Type Electrical
1 Baseplate1 0,0 44 28 1 copper p F
2 Base_Attach1 5,5 34 18 0.1 SAC405 p D
3 Bottom_Metal1 5,5 34 18 0.2 copper p G
4 Ceramic1 5,5 34 18 0.64 Al_N p D
5 I1 5,5 34 18 0.2 copper p S
6 S1 5,5 34 18 0.1 SAC405 p D
7 C1 34 18 2 None a C
8 S2 5,5 34 18 0.1 SAC405 p D
9 I2 5,5 34 18 0.2 copper p S
10 Ceramic2 5,5 34 18 0.32 Al_N p D
11 I3 5,5 34 18 0.2 copper p S
12 S3 5,5 34 18 0.1 SAC405 p D
13 C2 34 18 2 None a C
14 S4 5,5 34 18 0.1 SAC405 p D
15 I4 5,5 34 18 0.2 copper p S
16 Ceramic3 5,5 34 18 0.64 Al_N p D
17 Bottom_Metal2 5,5 34 18 0.2 copper p G
18 Base_Attach2 5,5 34 18 0.1 SAC405 p D
19 Baseplate2 0,0 44 28 1 copper p F

While creating a 3D layer stack, the component layer (C) thickness needs to be set carefully
as this layer has all the leads, devices, vias (posts), etc. The clearance of these components
need to be aligned with the thickness of the layer. However, in the case of 2D layer stack,
component layer is the top most layer and so the thickness of that layer is optional. For both
of the cases, the material information of the component layer is not required in the layer stack
as that information is read from individual component’s description file.

2. Parts: The components (active and passive devices), connectors (leads, vias) are considered
as parts in this version. The dimensions, material information of these elements are taken from
corresponding .part file. These files are written in a text editor and saved as .part extension.
A sample MOSFET.part and power_lead.part file content are shown in Figure 4 (a), (b),
respectively.

9

Figure 4: Content in (a) MOSFET.part, (b) power_lead.part file

In Figure 4 (a), each row has a key name e.g. “Name” and a value separated by a space e.g.:
“CPM2-1200-0025B”. The definition for each key is as follows:
Name: Name of the Part
Type: There are 2 options: component (device like MOS, diode, capacitor, etc.) or connector
(terminals like power lead, signal lead, via etc.)
Link: A link to the part datasheet
Footprint: Width <space> Length (Provide the footprint of the component in mm)
Thickness: Thickness of the component (in mm)
Material: Name of the Material (e.g., SiC) [should match with material library from MDK
(materials.csv file in MATERIAL_LIB_PATH of "settings.info" file.)]
Pins [list of preferred pin names separated by space]: Provide a list of pin names
Pin_name: For each pin provide a pin pad rectangle (bottom-left coordinate x <space> y
<space> width <space> height) reference to the component bottom left corner. At the end
of the pin rectangle add a keyword B or T to distinguish between Bottom and Top side pins.
Parasitics: Used to provide component internal parasitic information.
Pin_name1 <space> Pin_name2 <space> R: R_val <space> L:L_val <space> C:C_val
Provide a list of RLC value between every 2 pins (with internal parasitics)

For different devices, the keys need to be same, but the values will be changed depending on
the device type. In Figure 4 (b), each row has a key, value pair separated by a space.The
definitions for each key are similar to those in Figure 4 (a).

All .part files need to be saved in the "Part_Lib" folder. More sample .part files are provided
in the ‘Sample_Designs’ folder inside ‘Part_Lib’.

3. Wires: The wire standard, resistivity, and radius information are stored in a *.wire file. The
file content are written in a text editor and saved as .wire extension. Content of a sample wire
file is shown in Figure 5. In the *.wire file, the first line is the wire bonding standard. This
will affect the parasitic extraction of the bond wire group. The second line is the resistivity of
the material. This is used to compute the parasitic resistance of the wire (unit is Ωm). The
third line is used to provide the radius of the wire in mm. For bond wire with square cross

10

section, the effective radius can be used. In the last two lines, there is a space in between key
and value. All *.wire files need to be saved in ‘Wire_Lib’ folder.

Figure 5: Content in a *.wire file

2.2.2 Initial Layout Description

Once the technology library related files are ready, the initial layout needs to be described through
the text (.txt) files. PowerSynth 2 supports two formats for declaring the initial layout: (a) Full-
Custom Mode Script that gives freedom for custom placement of all components including the
bonding wires and all types of vias; (b) Semi-Custom Mode Script that makes the layout description
easier and finds the wire bond/post-type via locations automatically by imposing some restrictions
on the component usage. User can choose any of these two formats. Both modes are described below.

(a) Full-Custom Mode Script: This mode is useful to declare the initial layout with full
freedom. All previous versions of PowerSynth use this mode. In this mode, user needs to draft
every element locations carefully by using the global coordinate system for the entire layout. This
might be a tedious task for some complex layouts. On the other hand, the pros of this format is
the user can try any Manhattan layouts that do not need to be always hardware feasible with the
state-of-the-art manufacturing technologies. This mode is helpful for the researchers and developers,
who want to study new types of custom layouts. Two files are required to describe an initial layout
of a power module in this mode:
1. Layout geometry description script
2. Connectivity setup script.
Each of the file content is described below in detail:

1. Layout geometry description script: This script is a text (.txt) file to input the initial
layout geometry of the layout. This script contains the initial placement and routing of the
components, and connectors. A sample 2D, and 3D layout script file content are shown in
Figure 6, Figure 7, respectively.

11

Figure 6: Content in a full-custom 2D layout geometry description script

The file has two (2D layout) or three (3D layout) sections:
(a) Definition
In this part, the necessary parts (.part) file locations are provided. Anything below the tag

“#Definition” and up to the tag “#Layout Information" in the script are considered in this
section. For any new test case, the tags should not be changed. Also, a blank line is required
in between two sections (as shown in Figure 6).
The user can use any keywords to represent a component or connector which is defined by the
*.part file. These keywords need to be reused in the “#Layout Information" section. In the
“#Definition” section, in each line, there are two segments:
<segment1> <space> <segment2>.
<segment1> is the keyword of the component or connector (MOS, Diode, IGBT, power_lead,
signal_lead, Via, etc.)
<segment2> is the relative location of the component.part file.
(b) Via Connectivity Information
This section is required for 3D layout geometry description. In this part, all via type connec-
tions are declared using four fields separated by a space:
1. Layout component id (V1: Via 1 or V2: Via 2, etc.)
2. Via connecting routing layer 1 (I1: Interconnect layer 1 or I2: Interconnect layer 2, etc.)
3. Via connecting routing layer 2 (I1: Interconnect layer 2 or I2: Interconnect layer 3, etc.)
4. Via type (’Through’ or ’Port’). ’Through type via is required explicit declaration in the
script as shown in Figure 7. ‘Through’ via refers to the vias those are between two routing
layers of the same substrate (through ceramic via). The other type of via connects two routing
layers of two different substrates and known as ‘Port’ type vias. However, if the via type is

12

not mentioned in the script by default it is ‘Port’ type. So, in the layout description script,
there is no need to mention the type (4th field) of such vias. These vias represent the metallic
post-type connections as well.

Figure 7: Content in a full-custom 3D layout geometry description script

(c) Layout Information
This section describes the layout geometry and component hierarchy information for the layout
engine. Anything below the tag “#Layout Information” are used to describe the layout geom-
etry. The geometry should be described hierarchically and the hierarchical order is bottom-to-
top. For example, in the sample script shown in Figure 6, T6, T7, T8 are connected traces and
together create an island. This island should be declared first and then the devices or leads
on top of it need to be declared. Each island can be composed of single or multiple traces.
All connected traces in the same island needs to be declared at same hierarchy level. The
declaration should start with a ‘+’ character and other connected components need to start
with a ‘-‘ character. All components in each connected group should be of the same type (i.e.,
power traces or signal traces).
Each hierarchy level is separated by a ‘tab’ in the script and we currently support up to 3
levels of hierarchy (2 tabs) in this version (Trace->Device->Pin). Also, in the input script, the
coordinates should be given as integer values. However, in the constraint table, the fractional
constraint value is allowed up to 3rd decimal point.
All of the width and height information for devices or leads are directly read from the corre-
sponding “.part file” mentioned in the Definition section. So, these components do not have

13

width or height information specified in the layout geometry description script, whereas others
(e.g., traces and bond wire pads) have width and height fields.

To have a bond wire, the source pad and destination pad of the bond wire needs to be aligned
according to the wire orientation. For example, in the sample script (shown in Figure 6), the
gate signal of D1 is connected from B9 to B3 (Connectivity setup script section). B9 is on
top of the gate pad of D1. So, B9 and B3 should have the same y coordinate as this represents
a horizontal bond wire connection. The bond wire pad is considered as a point connection in
the algorithms. Since vias are connected across multiple layers, via description needs to be
declared in multiple layers with same coordinates.

Description of each line in the ’#Layout Information’ section:
Line1: Layer ID (from layer stack) <space> routing direction (Z+/Z-)
Line2-to-end: each line has several fields separated by <space>:
For all routing paths (Traces) have 7 fields:
1. ‘+/-’ : Connectivity definition character
2. ‘ID’ : layout component id (T1: Trace 1, T2: Trace 2,etc.)
3. ‘type of component’: for traces -> power or signal
4. x coordinate: bottom left corner’s x coordinate
5. y coordinate: bottom left corner’s y coordinate
6. width: width of the rectangle (along x axis)
7. height: height of the rectangle (along y axis)
For all parts (Devices, Leads, Vias) have 5-6 fields:
1. ‘+/-’ : Connectivity definition character
2. ‘ID’ : layout component id (D1: Device 1, L1: Lead 1, V1: Via 1, etc.)
3. ‘type of component’: ‘Via’ for vias
for devices-> name (should match with definition part) (MOS,Diode, IGBT, cap, res, etc.)
for leads-> name of lead (power_lead or signal_lead or neutral_lead)
4. x coordinate: bottom left corner’s x coordinate
5. y coordinate: bottom left corner’s y coordinate
6. Rotate angle: R90(90°rotation), R180(180°rotation), R270(270°rotation)
For all bonding wire landing points have 5 fields:
1. ‘+/-’ : Connectivity definition character
2. ‘ID’ : layout component id (B1: Bond wire point 1, B2: Bond wire point 2, etc.)
3. ‘type of component’: bond wire pads-> power or signal
4. x coordinate: x coordinate
5. y coordinate: y coordinate
In the test cases in Sample_Designs folder, the full-custom layout geometry script has two
more fields in each bonding wire landing point declaration line, which are width and length.
These two fields are optional in this version, as the bonding wire landing points are treated as
points not rectangles.

The coordinates of the elements on the same island (connected group) are correlated to each
other. To get the best results, this coordinate correlation needs to be minimized in the initial
layout description script. Coordinate correlation reduction would minimize better results. To
test if the updated constraints and initial layout description script are valid, please generate
a minimum-sized solution first. If there is an error in layout generation, the constraint values
may not be feasible. Also, if the minimum-sized solution is not a feasible one, there is probably
a correlation issue. Try to break correlations in the input script and run again. This can be
a trial and error process where the user needs to play with the input script until a feasible

14

minimum-sized solution is found.

2. Connectivity setup script: This is a text (.txt) file that defines all bonding wire and via
connections. An example of the file content for the 2D layout, and 3D layout are shown in
Figure 8, and Figure 9, respectively. This file has two parts:
(a) Definition
This section starts with a tag ‘# Definition’. In this section, different types of wire file
(*.wire) and via (*.part) locations are described. In each line, there are two segments:
<segment1> <space> <segment2>
<segment1> is the wire/Via name (used to map in the Table_info section).
<segment2> is the relative location of the wire file (.wire) or via file (.part).
(b) Table_info
From the initial layout, the user needs to connect each wire/via between its respective landing
points/pads. Some of the pin names are mentioned inside the component (*.part) file. For
example, a MOS with keyword D1 will have 3 pins: D1_Drain, D1_Source, and D1_Gate.
Also, other pins are shown in the layout file (Figure 6), such as B1, B2,..., etc. are used as
bonding wire landing pads.

Figure 8: Content in a bonding wire connection description file

Similar to the Definition for the components in the layout script, the user can use any
keywords for different types of wires. For each row under the # Table_info tag, the user can
define a bonding wire group (a set of parallel wires), begin with a name (must start with ‘BW’)
for the group, wire definition, start pin name, end pin name, number of wires, and spacing
(in mm) among multiple wires in the group separated by a space. For the example shown in
Figure 8, the first line in the # Table_info section defines a bonding wire with name: ‘BW1’,
type: ‘Wire’, start pin: ‘D2_Source_B12’, end pin: ‘B2’, number of wires: ‘1’, and spacing:
‘1.3’. Since B12 and B2 are connected, in the layout script (shown in Figure 6) they have same
Y-coordinate as this wire is a horizontal wire. Also, B12 is a point on the source pad of the
device D2, so the start pin name is ‘D1_Source_B4’. Similarly, for the via connections, user
needs to declare 4 fields separated by space: 1. Via connection name (must start with ‘VC’), 2.

15

Keyword ‘Via’ to match with the part file defined in the Definition section, 3. Starting pad
name with layer iD in the format <Layout component id><.><Routing layer id>[‘_’: if the
routing layer direction is ‘Z-’], 4. Ending pad name with layer id in the same format. Sample
example is shown in Figure 9. Since vias are connected across multiple layers, declaration in
one layer is enough.

Figure 9: Content in a bonding wire connection description file

(b) Semi-Custom Mode Script: This mode has less flexibility with designing the initial lay-
out. On the other hand, this script preparation requires less effort compared to the full-custom script.
In this script, wire bond point locations are automatically calculated based on the corresponding
parent component location. No separate connectivity script is required. Everything regarding the
layout description is declared in the same script. A sample 2D layout, and 3D layout, the scripts
are shown in Figure 10, and Figure 11, respectively. To merge the Connectivity setup script in
the Layout geometry description script, an additional field is added in the Layout geometry
description script compared to the full-custom mode script. Each section of the script is described
below.
(a) Definition
This section is exactly the same as the Full-Custom Mode Script. Please see above (Definition)

16

for details. Only difference is the ‘Wire’ definition. Since connectivity setup script is not required
and those information have been merged into this script, the ‘Wire’ definition is added to this section
along with other component definitions.

Figure 10: Content in a 2D semi-custom layout geometry description script

(b) Via Connectivity Information
To remove the redundant information, the via connectivity description has been modified. In this
section, there are two major fields: 1. Names of the routing layers pair separated by a space, 2.
List of the vias separated by space connecting the pair of the layers. A sample example is shown in
Figure 11. The via type is not required in this format.

17

Figure 11: Content in a 3D wire-bonded semi-custom layout geometry description script

18

(c) Layout Information
This section has all the basic information very similar as the Full-Custom Mode Script. The key
differences are explained here.
1. No wire bond point location is required. If an element of the layout contains a wire bond
group, mentioning the group name at the end of geometry description is required. However, if there
are multiple wire bond groups land on the same element, the group names need to be inserted
sequentially (on a device) or randomly (for other cases except devices. i.e, traces) separated by
space. For example, in the layout shown in Figure 10, ‘D1’ MOS has three wire bond groups (BW4,
BW9, BW3). These groups need to be inserted in a specific order: Gate wire group, Kelvin source
wire group, and Source wire group for the power loop. If any device does not have a Kelvin source
wire group, the order needs to be Gate wire group and Source wire group for the power loop.
In PowerSynth 2, semi-custom mode script, it is assumed that each MOSFET will have at least
two connections (Gate and Source). And vertical devices are considered only (SiC MOS, IGBT,
SiC Diode etc.) Since ‘BW4’ is connected between ‘D1’ and ‘T5’, ‘BW4’ is inserted on ‘T5’ trace
geometry description line as well. Comparing with the Full-Custom Mode Script, it is clear that
the bonding wire landing points are removed from the hierarchy script and wire group names have
been added at the end of each geometry description line. However, the wire group name declaration
order does not matter for the traces and the order needs to be maintained strictly for the devices.
2. Another difference is the via component description. If any via is a through ceramic type, that via
needs to be declared on each layer, which is exactly the same as the Full-Custom Mode Script.
However, if there is any metallic post type connection that connects a device source/gate pad to
another routing layer, no location specification of such vias is required. For example, a wire bondless
3D layout geometry script is shown in Figure 12. In this example, both through ceramic via (‘V3’)
and metallic post type vias are available. From the layout script, it is clear that the through ceramic
via ‘V3’ requires location specification, which is exactly the same as Full-Custom Mode Script.
However, the rest of the vias do not require any location specification. They are declared in the
same way as the wire bond groups. For the devices, the order of declaration needs to be same as
wire bond group declaration (Gate, Source) and for the traces, the order does not matter.

Apart from these exceptions, Layout Information description is same as the Full-Custom Mode
Script.

(d) Connection Table Info
This section is only for the wire bond group description. Connectivity information is embedded
in the geometry script. The sample content is shown in Figure 11. The keyword ‘# Connection
Table Info’ needs to be there. Then, the layer id is declared. The rest of the following lines describe
the wire bond group information until another layer id appears. Each line in the wire bond group
description has four fields: 1.The wire name (used to map in the Definition section). 2. Wire bond
group name that must start with ‘BW’ (i.e., BW1, BW2, etc.). 3. Direction of the wire group (X:
horizontal, Y: vertical). 4. Number of wires in each group. The spacing of the wires is calculated
from the wire landing pad dimensions and number of the wires. if there is a consecutive series of
wire bond groups with same direction and number of wires in the group, rather than describing in
multiple lines, the user can merge them using the following order: 1. The wire name, 2. Starting
group of the series, 3. Ending group of the series, 4. Direction of the group, 5. Number of wires in
each group. For example, if BW1, BW2, BW3 have the same wire name (Wire) , direction (Y), and
number of wires (3), then they can be declared by the following line:
Wire BW1 BW3 Y 3

19

Figure 12: Content in a wire bondless 3D semi-custom layout geometry description script

2.2.3 Constraints

The minimum constraint values are given as input through a CSV file. Generally, for each layout the
constraint file is automatically populated with some default values. However, the user can always
modify the values according to the manufacturer requirements. Since in this version, two types of
constraints (i.e., standard design constraints, and reliability constraints) are considered, the default
constraint table generates minimum standard design constraints and the user needs to set a flag
(‘Reliability-awareness’) to indicate that the reliability constraints are available (high voltage
application). The default constraint file content for the sample layout in Fig. 6 is shown in Fig. 13.

In Figure 13, the highlighted (red/green) fields are representing constraint names. The blue
colored fields are representing the elements in the layout. All elements are directly related to the
layout geometry description script (shown in Figure 6) except the "EMPTY" field. This type
represents the etched area on top of a DBC, which means any area where there is no copper. Rest
of the fields are dynamically populated based on the elements in the layout.

If the Reliability-awareness flag is set, then along with the minimum design constraints shown
in Figure 13, additional content is populated in the same constraint file. The additional rows in the
csv file for the sample layout in Figure 6 is shown in Figure 14. Here, first few lines are for voltage
and current specifications with default value 0. The user needs to modify the values according to
the specific requirements. In the voltage and current specification sections, there are four fields to
describe the voltage and current loading for each island (connected group of traces) as all waveforms
are considered in generic sinusoidal form: A+ B sin (2πft+θ). Here, A= DC magnitude (V/A), B=
AC magnitude (V/A), f= Frequency, θ = Phase angle. So, while providing the values, the waveform
needs to be fit in the equation and then the coefficient values need to be provided. If there are
multiple traces in an island, one trace will be appeared in the constraint table as all traces on the

20

same island are connected. For example, in the constraint table shown in Figure 14, only T2.4 has
appeared as T2.4, T3.4, and T4.4 are on same island in Figure 6.

Figure 13: Content in a constraint file with minimum design constraints only

Once the waveforms are defined, the voltage-dependent minimum spacing and current-dependent
minimum width values need to declared in the last two sections (highlighted in red color). For voltage
difference vs minimum spacing, user can add rows depending on the expected voltage difference
levels in the layout. The voltage difference calculation method can be found in [15]. In the initial
constraint table, only one row under ‘Voltage Difference’ and ‘Current Rating’ will appear. For
additional constraints, the user needs to add the rows in the CSV file. For example, if the user is
expecting 3 additional voltage differences like 5000V, 10000V, 15000 three more rows need to be

21

Figure 14: Content in a constraint file associated with the reliability constraints

added in this section with the corresponding minimum spacing values. Similarly, for the current
rating vs minimum width constraints, user needs to add rows depending on the requirements. The
voltage differences and current ratings in the constraint table need to increase with a constant value.
If the calculated voltage difference between two traces is in between two values provided in the
constraint table, it will choose the upper bound for safety. For example, if the user has 0 V, 5000
V, 10000 V voltage differences, and the calculated voltage difference is 2500 V, the constraint value
that will be applied is for the 5000 V difference case.

The user can open the constraint file and edit the values and save it in the same location. No
renaming is required. While assigning the constraint values, care needs to be taken to make sure
the constraints are valid.

2.3 PowerSynth 2.0 GUI Introduction

Upon running PowerSynth executable, the following welcome window (shown in Figure 15) will
appear. The window has four buttons: (a) Open Website button to access PowerSynth webpage,(b)
Open Manual button to open the manual, (c) Create a Macro button to start a new test case
flow that will generate a macro script, which can be used later to avoid the tedious GUI flow, and
(d) Run PowerSynth 2 to re-run an existing test case using the macro script generated by the
Create a Macro flow.

22

Figure 15: PowerSynth 2.1 welcome window

PowerSynth 2 user can run PowerSynth in two ways: Creating a new Macro, which is the
recommended flow to start any new design optimization; Running an existing Macro, which helps
the user to avoid tedious GUI flow when the user wants to run the same project with a little
modification. Both of these flows are described below.

(a) Create a Macro: Upon clicking on this button, the user will be asked to input the initial
layout structure information.

• Data Input: The fields in the window shown in Figure 16 need to be populated.

Figure 16: Data input

The user needs to provide the path to the Layer stack, Layout geometry script in the
corresponding field. Since PowerSynth 2 has both Full-Custom and Semi-Custom mode of
layout geometry script, the Connectivity script is set as optional, which means it is required
for only Semi-Custom mode layout geometry script cases. If the layout geometry script
provided by the user is in Full-Custom mode, this Connectivity_script field should be

23

left as blank. Each of these script need to be prepared beforehand according to the description
in Section 2.2. Finally, the user needs to set up the reliability constraint information. On
the drop down list, there are three options: (1) no constraints, (2) average case, (3) worst
case. Please note that if the user wants the reliability constraints to be applied, which means
if the selection is either average case or worst case, the constraints.csv file in the test case
folder needs to be populated with the reliability constraints fields as shown in 13 along with
the design constraints. If the reliability constraints is set to no constraints, only the design
constraints need to be populated in the constraints.csv file. After choosing one option, the
user needs to click the Create Layout button to proceed.

• Edit Layer Stack: In this stage, the layer stack table will appear and the user can edit the
values if they want (shown in Figure 17).

Figure 17: Edit Layer Stack

• Edit Constraints: Upon clicking on the Continue button, the Edit Constraints window will
appear. The user can edit the values if they want (shown in Figure 18).

Figure 18: Edit Constraints

• PowerSynth Run Options: The next step would be choosing an option for using Power-

24

Synth from three following choices (shown in Figure 19). These options are referred to as
Option in the macro script.

Figure 19: PowerSynth 2 run options

1. Layout solution generation only: Since PowerSynth 2 layout engine is a generic, scalable,
and efficient one to generate the layout solutions rapidly, user can use this flow. However, in
this mode, no layout performance evaluation will be performed. This mode of operation is
referred to as Option 0 in the macro script. As shown in the window labeled as 1 in the
Figure 19, the user can generate three types of layout solutions (described in Table 1). The
user needs to provide the randomization seed so that the solution generation can be repetitive.
For the minimum-sized solutions (layout mode 0), there will be a single solution, whereas
for other two cases, the Number of layouts and generations needs to be provided. For the
Fixed-sized solutions case (layout mode 2), the Floor Plan size needs to be provided as well.
Please note that the floorplan size needs to be greater than the minimum floorplan size. For
solution generation, the default algorithm is the non-guided randomization (NG-RANDOM).

2. Initial layout evaluation: This flow will evaluate the initial layout described in the layout
geometry. Please note that no design rule checking will be performed on this layout. This
option is called Option 1 in the macro script. Upon clicking on this button the window
marked as 2 in the Figure 19 will appear. From this window, user needs to set up electrical
and thermal modeling parameters by clicking on the corresponding buttons. Once those are
set up, save the macro script using Save As button. After thath using Run PowerSynth 2
button will start the evaluation and take to the Solution Browser.

3. Layout optimization/evaluation: This step is the most useful one that is referred to as
Option 2 in the macro script. In this flow, the user can generate DRC-clean solutions and
evaluate the electro-thermal performance values. The electrical and thermal setup steps are
described in the next step. In this mode, if user is using fixed-sized solutions or variable-sized
solutions, then the user can choose either NG-RANDOM or genetic algorithm NSGAII
particle swarm (MOPSO) for optimization. If the choice is NG-RANDOM, the number of
layouts need to be provided in the Layout count field. Otherwise, in addition to number of
layouts, the number of generations must be determined in the Number of Generations for
NSGAII and MOPSO.

• Electrical Setup: If the user wants to evaluate/optimize the layout by choosing either Op-
tion 1 or Option 2, the electrical setup window (shown in Figure 20) needs to be opened and
necessary parameters need to be provided.

25

Figure 20: Electrical setup window: Before (Initial) and after (Final) setting up parameters

In this window, the user can choose the appropriate electrical model for evaluation from two
options: FastHenry (for 3D layouts) and PEEC (for 2D) layouts. Then, the user needs to
provide a name of the performance measure in the Measure Name field. User can choose
either inductance or resistance for parasitic extraction. Then, the devices in the layout need
to be setup for completing the desired loop. If it is the power loop, all devices’ drain and
source need to be connected. To do so, the user needs to click on Add All button. That will
add all devices in the design in the table as shown in the Figure 20. The user can define the
partial loop by choosing selective devices and making sure the loop is complete by choosing
appropriate connection corresponding to the device. Add Device button will add devices
one by one and Remove Device button can be used to remove any device from the table.
Then, the user needs to choose ‘Source’ and ‘Sink’ for the loop. All leads will be appeared in
the drop down list. To make sure the power/signal loop connectivity is established, for each
device, appropriate option need to be selected. Fo rexample, for the power loop connection, all
the vertical devcies’ drain and source need to be connected. The parasitic extraction frequency
can be set up in the Frequency field. Please note that the value is assumed to be in the kHz.
So, the entered value will be multiplied by 1000 for actual frequency in Hz.Finally, the trace
orientation file needs to be inserted. The content in a sample trace orientation file for the
layout shown in Figure 6 is shown below. H: T1.4,T3.4,T6.4,T8.4,T9.4,T10.4
V: T2.4,T4.4,T5.4,T7.4
Here, H stands for horizontal and V stands for Vertical. From the layout script, the user should
know which traces are horizontally (x-axis dimension>=y-axis dimension) routed and which
are vertically (y axis dimension> x-axis dimension). The trace name has two parts:‘<Layout
component id>.<Interconnect layer id>’.Layout component id should come from the layout
script and the interconnect layer id should come from the layer stack. After populating all
the fields the window should look like the one shown in Figure 20 (right). Then, clicking the
Continue button will take back to the optimization setup window.

26

• Thermal Setup: For thermal evaluation setup, the parameters need to feed through this
window (shown in Figure 21).

Figure 21: Thermal setup window: Before (Initial) and after (Final) setting up parameters

To facilitate thermal evaluation for 2D/3D layouts, the ‘ParaPower’ model is the default one.
The user needs to input a performance name for the measurement. Then, similar to the
electrical setup, the user needs to populate the table with the static heat dissipation value for
each device. In the Heat Convection field, if the module has a single-sided cooling, only a
single value of effective heat transfer coefficient value in W/m2 −K needs to be provided. If
the layout has a double-sided cooling, both faces’ heat transfer coefficient value need to be
inserted separated by a comma (as shown in Figure 21 (right)). Finally, the user needs to setup
the ambient temperature in Kelvin. Upon filling all the parameters, the window will look like
Figure 21 (right). Then, clicking the Continue button will take back to the optimization
setup window.

• Solution Browser: Once the electrical and thermal settings are loaded, save the macro script
by clicking on Save As button. After that, upon running the PowerSynth by clicking on Run
PowerSynth 2 button, and Run button in the Run Macro window, the interactive solution
browser window will pop up with the solution space. A sample solution space with a single
solution is shown in Figure 22. On the window, there is a layout viewer on the left side. Each
dot in the solution space is clickable and upon clicking on each dot, the corresponding layout
will appear in the viewer. If the design is a 3D layout with multiple layers, each layer will
have a tab, and to see the via alignment, there is a ‘All Layers’ tab. If the user is running
PowerSynth in evaluation/optimization mode, the performance values, and floorplan size of
the selected layout will be appeared in the bottom. Finally, the user can either export the
selected solution by clicking on Export Selected button or export all solutions by clicking

27

on Export All. Upon exporting the solution/solutions, the solution space, individual layout
information, and parasitic netlist will be saved in the ‘Solutions’ directory of the design case
folder.

Figure 22: Minimum-sized solution space window

(b) Run PowerSynth: If the user has a macro script ready from the Create a Macro flow,
the user may use this option from the ‘Welcome’ window. Upon clicking on this button, the window
shown in Figure 23 and asks for the macro script file from the user. The macro script content is
discussed below.

Figure 23: Run a project window

1. Input Scripts

2. Layout Generation and Optimization Setup

Description about each section is as follows: Input Scripts In this section, eight files/directories
locations are provided. Detailed description for each of them are provided below:

1. Layout_script: In this field, the location of the Layout geometry description script
needs to be provided.

2. Connectivity_script: Here, the location of the Connectivity setup script needs to be
provided for the Full-Custom Mode Script. Since the Semi-Custom Mode Script does
not require the separate Connectivity setup script, this field should not be in the macro
script for those cases.

28

3. Layer_stack: Location of the Layer stack file is provided here.

4. Parasitic_model: default value should be good here as this is required for Response
surface electrical model, which is not supported in this version.

5. Fig_dir: Needs a path of a directory to save the figures.

6. Solution_dir: Needs a path of a directory to save the solution database file. This database file
contains layout information which is used to plot the figures. In this folder, all performance
values of the solutions and corresponding Pareto-front solution set are reported as a .csv
format. Besides, each layout solution components and corresponding coordinates, dimensions
of all solutions and Pareto solutions are dumped in individual CSV file in this folder.

7. Constraint_file: The constraint file is a CSV file, where all constraint values are stored.
Depending on the mode of the flag ‘New’ in the macro file, a constraint file will be created or
loaded to generate the layout solutions. In this field, the user needs to provide the location of
an empty CSV file (for the first time for each layout) and make sure the ’New’ flag is set to 1.
This flag value allows user to modify the default constraint values populated by PowerSynth.
Once the values are modified, the ’New’ flag needs to be set to 0, which reloads the constraint
values in the specified file and does not require to edit the values again.

8. Model_char: The path of the folder named ’Characterization’ should be enetered here. In
this folder the device setup connection is stored as a json file, which is used by the electrical
model. For the first time run, nothing needs to be in the folder. It will be automatically
populated after the first run.

9. Trace_Ori: This field is the ’Trace Orientation’ description file. A text (.txt) file location
with trace orientations needs to be provided. This file is required for the electrical model to
evaluate electrical performance. Two orientations are possible for each trace: Horizontal and
Vertical. This represents the preferred current flow direction for the trace.

Layout Generation and Optimization Setup Layout Generation
In this section, PowerSynth layout solution generation and performance evaluation setup are defined.
Each field for this section is described below:

1. Reliability-awareness: If high-voltage and current dependent constraints (reliability con-
straints) are available and the user wants to apply those, this flag should be set to 2. Setting
up this flag as 0 indicates no reliability constraints are applied. If this flag is set to 1, worst-case
conditions (theoretical, not always practical) are considered. To have reasonable, practical,
and reliability-aware layout generation, this flag needs to be set to 2. If reliability-awareness
is set to 1, or 2, in the constraint table, voltage and current specifications are populated for
modification. Details are described in Section 2.2.1.

2. New: If ‘New’ flag is set to 1, user will be asked to edit the constraint table in the given
constraint file location while running the test case. Once the edition is done, user needs to
enter "1" in the terminal to continue. For each new test case, this flag has to be set to 1 for
the first run. Then, for other iterations, the flag needs to be set to 0, otherwise the modified
constraint values will be overwritten by the default values. If the flag is set to 0, the constraint
values already saved in the given constraint file are used to generate solutions.

3. Plot_Solution: If this flag is set to 1, all solution layout images will be saved in the Fig_dir.

29

4. Option: To choose from the three options mentioned earlier: 1. Layout solution generation
only, 2. Initial layout evaluation, 3. Layout optimization/evaluation, this flag is provided.
Based on your choice provide 0, 1, 2 respectively for the options given above. For example: to
run layout optimization, you will provide 2 in the option field.

5. Layout_Mode: This field is related to layout generation. In this version, three modes of
layout generation are allowed: 1. Mode-0: minimum-sized solution, 2. Mode-1: variable-sized
solutions, 3. Mode-2: fixed-sized solutions. This option is effective if the user has chosen 0 or
2 as Option field value. For Mode-0, a single solution is generated. For other modes user can
choose number of solutions. Since in Mode-0, user can generate a single solution, if ‘Option’
is set to 2, that single solution will be evaluated and this will not generate any Pareto-front as
the solution space length is 1. It is recommended that for each new test case, user generates
minimum-sized solution (Mode=0) to make sure that the initial layout and constraint values
are correct. However, based on user requirement, Layout_Mode value can be 0, 1, or 2.
For example: if user chooses fixed size layouts to be generated, Layout_Mode should be
set to 2. There are some other parameters required depending on the Layout_Mode: Seed,
Floor_plan, Num_of_layouts and Num_generations.

6. Seed: Randomization seed. Effective for Option=0, and 2 and Layout_Mode= 1, 2.
Because for the rest of the mode/option there is a single solution.

7. Floor_plan: Size of layout (Width, Height). This input is effective for Option=0, and 2 and
Layout_Mode= 2. Because the Mode-2 generates the fixed floorplan size solutions. Please
make sure that the input floorplan size is larger or equal to the minimum floorplan size.

8. Num_of_layouts: Desired number of solutions. Need to give an integer. Required for
Option=0, and 2 and Layout_Mode= 1, 2.

9. Optimization_Algorithm : It can be either NG-RANDOM, NSGAII, or MOPSO.
If the NSGAII or MOPSO is chosen, please note that Num_of_layouts field and
Num_generations field must be determined for the optimizer.

Performance Evaluation Setup
In this version, two types of performance evaluation are allowed: Electrical and Thermal. This
allows electro-thermal optimization only. Also, only two objectives are allowed at a time. In this
section, electrical and thermal evaluations are set up. The following information are required for the
electrical and thermal APIs:
a) Electrical Setup
This section should start with keyword “Electrical_Setup:” and end with keyword
“End_Electrical_Setup.” In between these two lines following information are required:
1. Measure_Name: Put an arbitrary name for electrical measurement.
2. Model_Type: Use either of the two options: PowerSynthPEEC or FastHenry.
3. Measure_Type: Two options: 1. Inductance, 2. Resistance. Based on the user’s choice please
provide 0, 1 respectively.
4. Device_Connection: The device connection setup is required to complete the loop before eval-
uating the loop inductance. So, this part defines connections among the pins of each device. For
example: MOS has 3 pins: Drain, Source, and Gate. So, there are three options for each MOS:
Column1: Drain-to-Source, Column2: Drain-to-Gate, Column3: Gate-to-Source.
Based on your requirement for the desired loop evaluation, provide Device ID and Sequence of 0 or
1 corresponding to each column. For example, in the layout script if you have two MOS declared as

30

D1 and D2 and you want to short the drain and source of each device, your input will be:
Device_Connection:
D1 1,0,0
D2 1,0,0
End_Device_Connection.
4. Loop Source and Sink: To evaluate a loop inductance or resistance, you need to provide a source
and sink. Sources and sinks should be from the leads (L1, L2,. . . , etc.)
For example, to measure loop inductance from Lead 1 to Lead 4, the input will be:
Source: L1
Sink: L4
5. Frequency: You need to provide a switching frequency for parasitic extraction. The unit is in
kHz.
b) Thermal Setup
In this version, only static maximum temperature can be evaluated. This section should start with
keyword Thermal_Setup: and end with keyword End_Thermal_Setup.. In between these
two lines, the following information are required:
1. Model_Select: 2 is the value, which needs to be input here to select the ParaPower model.
2. Measure_Name: Put an arbitrary name for thermal measurement.
3. Selected_Devices: Enter the list of device names for which user wants to measure their respective
temperatures.
3. Device_Power: Enter list of power/heat dissipation (W) for each device in the Selected_Devices.
4. Heat_Convection: Enter a value for the heat transfer coefficient that nees to be applied to the
baseplate backside(W/m2 −K).
5. Ambient_Temperature: Enter a value of ambient temperature (K).

To summarize the above-mentioned contents, a sample macro script template is shown in Table 3.

31

Table 3: List of fields in a macro script

Input Scripts: # Performance Setup
Layout_script: Electrical_Setup:
Connectivity_script: Measure_Name:
Layer_stack: Model_Type:
Parasitic_model: Measure_Type:
Fig_dir: Device_Connection:
Solution_dir: D1 1,0,0
Constraint_file: .
Model_char: End_Device_Connection.
Trace_Ori: Source:
Layout Generation Set Up Sink:
Reliability-awareness: Frequency:
New: End_Electrical_Setup.
Plot_Solution: Thermal_Setup:

Measure_Name:
Option: Selected_Devices:
Layout_Mode: Device_Power:
Floor_plan: Heat_Convection:
Num_of_layouts: Ambient_Temperature:
Seed: End_Thermal_Setup.
Optimization_Algorithm:
Num_generations:

2.4 Walk-Through Three Examples

Since PowerSynth 2 can optimize both 2D and 3D layouts, in this section one of each kind is
demonstrated step-by-step. In addition, in this version converter layout design which is in the
experimental phase is considered as a new example case design.

2.4.1 2D MCPM Layout Optimization

A sample 2D half-bridge power module layout (shown in Figure 24) is chosen to demonstrate the
features of PowerSynth v2.1. To optimize the power loop inductance from DC+ (L2)-to-DC- (L1)
and the maximum temperature of the layout, the layout script needs to be generated. Also, to
represent the layout we need to have the following parts:
1. MOSFET, 2. Power Lead, 3. Signal Lead, 4. Capacitor. The steps are described as follows:

1. Prepare all part files and save in Part_Lib folder. So, this folder should have:
1. MOSFET.part (Content is shown in Listing 1)
2. Power_Lead.part (Content is shown in Listing 2)
3. Signal_Lead.part (Content is shown in Listing 3)
4. capacitor.part (Content is shown in Listing 4)

32

Listing 1: MOSFET.part file content
Name CPM2 -1200 -0025B
Type component
Link https ://www.wolfspeed.com/downloads/dl/file/id /152/
product /2/ cpm2_1200_0025b.pdf
Footprint 4 6
Thickness 0.18
Material SiC
Pins Drain Source Gate

Drain 0 0 4 6 B
Source 0.335 0.35 3.5 4.5 T
Gate 1.03 5 0.5 0.5 T

Parasitics
Drain Source R:25e-3
Drain Gate R:1.1
Gate Source R:1.1

Listing 2: power_lead.part file content
Name PL1

Type connector
Footprint 3 3
Thickness 2
Material copper

Listing 3: signal_lead.part file content
Name SL1
Type connector
Footprint 1 1
Thickness 2
Material copper

Listing 4: capacitor.part file content
Name CKG57NX7T2J105M500JH
Type component
Footprint 6 2
Thickness 5
Material Al_N

2. Prepare the wire definition file and save in Wire_Lib folder. So, this folder should contain
the ‘bond_wire_info.wire’ file (content is shown in Listing 5).

Listing 5: bond_wire_info.wire file content
JEDEC -4 points
Resistivity 0.000001
Radius 0.127

33

3. Create layout script. To represent the layout shown in Figure 24, the initial lay-
out_geometry_script is shown in Listing 7.

Figure 24: (a) A sample 2D half-bridge power module layout, (b) script-generated layout

4. Prepare layer stack file and save as .csv format. The file content for this design is shown in
Table 4.

Table 4: Layer_stack file content

ID Name Origin Width Length Thickness Material Type Electrical
1 Baseplate 0,0 50 60 5 copper p F
2 Bottom_Metal 0,0 40 50 0.2 copper p G
3 Ceramic1 0,0 40 50 0.64 Al_N p D
4 I1 0,0 40 50 0.2 copper p S
5 C1 40 50 0.18 SiC a C

5. Create a blank csv file for constraints. For this case, the file name is "constraint.csv".

6. Prepare the trace orientation file. The content for this design is shown in Listing 14

Listing 6: Trace_Ori file content
H:T1.5,T3.5,T6.5,T8.5,T9.5,T10.5
V:T2.5,T5.5,T7.5,T4.5

34

Listing 7: Layout_script for the layout shown in Fig. 24

Definition
power_lead ./ Part_Lib/power_lead.part
signal_lead ./ Part_Lib/signal_lead.part
MOS ./ Part_Lib/MOSFET.part
cap ./ Part_Lib/capacitor.part
Wire ./ Wire_Lib/bond_wire_info.wire
Layout Information
I1 Z+
+ T1 power 1 1 38 8 BW5 BW7

+ L1 power_lead 2 3
+ T3 power 1 33 17 16
- T2 power 9 11 9 22

+ D1 MOS 10 17 R270 BW4 BW9 BW3
+ D2 MOS 10 26 R270 BW2 BW10 BW1
+ L2 power_lead 2 39

+ C1 cap 10 9
+ T4 signal 1 11 3 20 BW9 BW10

+ L4 signal_lead 2 23
+ T5 signal 5 11 3 20 BW2 BW4

+ L5 signal_lead 6 23
+ T6 power 22 11 17 9
- T7 power 19 11 3 38 BW1 BW3
- T8 power 22 33 17 16

+ D3 MOS 26 13 BW11 BW13 BW5
+ D4 MOS 33 13 BW12 BW14 BW7
+ L3 power_lead 35 39

+ T9 signal 26 27 13 3 BW13 BW14
+ L7 signal_lead 30 28

+ T10 signal 26 23 13 3 BW11 BW12
+ L6 signal_lead 30 24

Connection Table Info
I1
Wire BW1 X 3
Wire BW3 X 3
Wire BW2 X 1
Wire BW4 X 1
Wire BW9 X 1
Wire BW10 X 1
Wire BW5 Y 3
Wire BW7 Y 3
Wire BW11 Y 1
Wire BW13 Y 1
Wire BW12 Y 1
Wire BW14 Y 1

35

7. Create a blank csv file for constraints. For this case, the file name is "constraint.csv".

8. Prepare the trace orientation file. The content for this design is shown in Listing 8

Listing 8: Trace_Ori file content
H:T1.4,T2.4,T4.4,T6.4,T5.4,T10.4
V:T3.4

9. Now, run PowerSynth executable by running the PowerSynth2 command from ubuntu 22.04
machine.For Windows machine double click the PowerSynth2-GUI.
Then, follow the GUI instructions and provide necessary files according to the figures shown
below.

10. Create a Macro Flow: Start with the Create a Macro button and we will be using the
default materials. Then, populate the layer_stack.csv file location, layout_script.txt file
location. Since the layout geometry script is in semi-custom mode, the Connectivity_script
field should be left blank. Since in this run, we will not be using any reliability constraints
settings, None is selected. These steps are summarized in Figure 25.

Figure 25: Start PowerSynth and loading module structure

11. Upon clicking on the Create Layout button, the Edit Layer Stack window will appear.
Since we have already created the layer stack file, we will hit Continue to proceed (as shown
in Figure 26).

12. In this stage, the constraint table will appear and you can edit the default values if you want.
In different tabs, different type of constraint values are shown (shown in Figure 27). We will
hit Continue as we don’t want to change any value.

13. Now, we will select the option to run PowerSynth optimization. Since we want to optimize the
layout, we will choose the Layout optimization/evaluation button to proceed. Before start
optimization for a fixed floorplan size, we will evaluate the minimum floorplan size solution.

36

So, we will input the seed to control randomization. Then, we will click the Open Electrical
Setup to set up electrical performance evaluation parameters. These steps are summarized in
Figure 28.

Figure 26: Loaded layer stack

Figure 27: Loaded default constraint table

14. Since it’s a 2D layout, we will select the PEEC model for parasitic evaluation, and put the
measurement name as Inductance as we will evaluate inductance of the power loop of the
module. To set up the power loop we will click on either Add Device button four times
as there are four devices in the module or Add All button once. Then, for each device, we
need to select Drain to Source to complete the power loop. Then, we have to choose the
source and sink of the loop. In this case, DC+ is L2 and DC- is L1. The extraction frequency
in kHz needs to be provided. Then, the Trace_Ori file location needs to be added. Since
we do not have any parasitic_model file, we will put default there. After entering all of
these information Continue button will take back to the optimization setup window. From

37

there, the Open Thermal Setup button needs to be clicked to setup thermal performance
evaluation parameters.

Figure 28: Start optimization

Figure 29: Optimization setup

38

Figure 30: run PowerSynth optimization

15. On the thermal setup window, the thermal model is ParaPower. We nend to provide a name
of the measurement and then set up each device’s heat dissipation value in Watts (W). Since
we have four devices, we have added four devices and selected each device with corresponding
heat dissipation at 10 W. Since it’s a 2D module with single-sided cooling, we have provided
a heat transfer coefficient of 150 W/m2K. Finally, we have set up the ambient temperature
at 300 K. Then, hitting the Continue button will take back to the Optimization Setup
window. Since both electrical and thermal modeling set up are done, we can click on the Save
AS to save the macro script. After that, by clicking Run PowerSynth 2 button and Run
button to evaluate the result. All of these steps are summarized in Figures 29, 29 .

16. After evaluation, the Solution Browser window will pop up (as shown in Figure 31). In
this window, there will be a single in the solution space plot as we have generated a single
solution. Upon clicking on the point, the corresponding layout will appear in the left window
and performance values will be shown in the bottom of the window. From this window, the
solution layout information can be exported in csv format by clicking either Export Selected
or Export All. Also, to visualize the initial layout, the Initial Layout button can be
pressed. This process has exported a Macro script in the project directory, which can be
used for re-rerunning in different modes with Run a Project flow from the start GUI.

39

Figure 31: Solution browser

Since we have evaluated the minim-sized solution and got the performance values, and floorplan
size, we can run PowerSynth to optimize the layout. To optimize, we can use the macro script
that is saved in the project directory. We can modify the script and run PowerSynth in Run
PowerSynth 2 Mode. If the macro_script is opened, there will be no floorplan size in the
macro script, as we did not enter any floorplan size in the previous run (Create a Macro). To
optimize the layout for a given floorplan size, we need to add that information. We also need to
enter the number of layouts we want to generate using NG-RANDOM optimization algorithm. If
the user wants, the optimization algorithm can be changed to ’NSGAII’ or ’MOPSO’ which should
add the number of generations as well. In this example, we want to optimize the layout for the
floorplan size 40mm × 50mm using NG-RANDOM, NSGAII, and MOPSO. the number of
layouts is considered 400, and the number of generations (Iterations) is considered 9. So, the macro
script for NSGAII should look like the following Listing 9. For NG-RANDOM and MOPSO we
should change the NSGAII to them. The changes are: Option, Layout_mode, Floor_plan,
Num_of_layouts, Optimization_Algorithm, Num_generations.

40

Listing 9: Macro script for optimization
Input scripts:
Layout_script: <path >/ layout_geometry_script.txt
Layer_stack: <path >/ layer_stack.csv
Parasitic_model: default
Fig_dir: <path >/Figs
Solution_dir: <path >/ Solutions
Constraint_file: <path >/ constraint.csv
Model_char: <path >/ Characterization
Trace_Ori: <path >/ Trace_Ori.txt
Layout Generation Set up:
Reliability -awareness: 0
New: 0
Plot_Solution: 1
Option: 2
Layout_Mode: 2
Floor_plan: 40,50
Num_of_layouts: 400
Seed: 10
Optimization_Algorithm: NSGAII
Num_generations: 9

Electrical_Setup:
Model_Type: PEEC
Measure_Name: Inductance
Measure_Type: 0
Device Connection Table
Device_Connection:
D1 1,0,0
D2 1,0,0
D3 1,0,0
D4 1,0,0
End_Device_Connection.
Source: L2
Sink: L1
Frequency: 10000
End_Electrical_Setup.

Thermal_Setup:
Model_Select: 2
Measure_Name: Temperature
Selected_Devices: D1,D2,D3 ,D4
Device_Power: 10,10,10,10
Heat_Convection: 150
Ambient_Temperature: 300
End_Thermal_Setup.

41

To run the updated macro script, we need to run the executable and click on the Run Power-
Synth 2 button. Then the macro_script file location needs to be provided. The flow is shown
in Figure 32. Then, once the Run button is clicked, the optimization will start and after waiting
for a while, the solution browser will pop up and should look like the Figures 33, 34, and 35 for
NG-RANDOM, NSGAII, and MOPSO respectively.

Figure 32: Run a Project Flow

Figure 33: NG-RANDOM Solution space for 2D layout optimization

42

Figure 34: NSGAII Solution space for 2D layout optimization

Figure 35: MOPSO Solution space for 2D layout optimization

43

2.4.2 3D MCPM Layout Optimization

Figure 36: Initial 3D layout

To illustrate the 3D MCPM layout optimization capability, the initial layout shown in Figure 36.
To optimize the power loop inductance from DC+ (L1)-to-DC- (L5) and maximum temperature of
the layout, the layout script needs to be generated as shown in 11. Also, to represent the layout we
need to have the following parts:
1. MOSFET, 2. Power Lead, 3. Signal Lead, 4. Capacitor. The steps are described as follows:

1. Prepare all part files and save in Part_Lib folder. So, this folder should have:
1. MOSFET1.part (Content is shown in Listing 10)
2. Power_Lead1.part (Content is shown in Listing 11)
3. Via1.part (Content is shown in Listing 12)

44

Listing 10: MOSFET1.part file content
Name CPM2 -1200 -0040B
Type component
Footprint 4.36 7.26
Thickness 0.18
Material SiC
Pins Drain Source Gate

Drain 0 0 4.36 7.26 B
Source 0.33 0.31 3.66 5.26 T
Gate 1.68 5.67 0.84 0.6 T

Parasitics
Drain Source R:1e-4
Drain Gate R:1.1
Gate Source R:1.1

Listing 11: power_lead1.part file content
Name PL1
Type connector
Footprint 3 3
Thickness 0.18
Material Copper

Listing 12: Via1.part file content
Name Via
Type connector
Footprint 2 2
Thickness 0.1
Material Cu

2. Prepare the wire definition file and save in Wire_Lib folder. So, this folder should contain
the ‘bond_wire_info.wire’ file (content is shown in Listing 13).

Listing 13: bond_wire_info.wire file content
JEDEC -4 points
Resistivity 0.000001
Radius 0.127

3. Prepare layer stack file and save as .csv format. The file content for this design is shown in
Table 5. This layer stack is different from the regular one to apply effective heat transfer
coefficient on the top and bottom surface of the module. Since this is a wire bonded 3D
module, to make an even surface on both sides, a layer of air has been considered surrounding
the module to fill the gap and make an even surface on both sides.

45

Table 5: Layer_stack file content

ID Name Origin Width Length Thickness Material Type Electrical
1 C1 0,0 37.5 37.5 0.255 None a C
2 I1 0,0 37.5 37.5 0.1 copper p S
3 Ceramic1 0,0 37.5 37.5 0.5 Al_N p D
4 I2 0,0 37.5 37.5 0.1 copper p S
5 C2 0,0 37.5 37.5 0.255 None a C
6 Baseplate 0,0 37.5 37.5 1.21 Air p G

4. Create a blank csv file for constraints. For this case, the file name is "constraint.csv".

5. Prepare the trace orientation file. The content for this design is shown in Listing 14

6. Now, run PowerSynth executable and follow the steps as shown in 2D case to generate the
macro script by running the minimum-sized solution generation flow. Once the macro script
and constraint file are updated, the script will look like the listing 15. Here, we are generating a
solution space with 200 solutions using NG-RANDOM optimization algorithm for floorplan
size of 37.5mm× 37.5mm (Layout mode 1). In addition, we run this example using NSGAII
and MOPSO.

Listing 14: Trace_Ori file content
H:T2.2,T3.2,T4.2,T1.4,T2.4,T3.4,T4.4,T6.2,T9.4,T8.4,T8.2,T9.2
V:T1.2,T5.2,T7.2,T6.4,T5.4,T7.4

Figure 37: NG-RANDOM Solution space for 3D MCPM layout

46

Figure 38: NSGAII Solution space for 3D MCPM layout

Figure 39: MOPSO Solution space for 3D MCPM layout

47

Listing 15: Macro script for optimization
Input scripts:
Layout_script: <path >/ layout_geometry_script.txt
Layer_stack: <path >/ layer_stack.csv
Parasitic_model: default
Fig_dir: <path >/Figs
Solution_dir: <path >/ Solutions
Constraint_file: <path >/ constraint.csv
Model_char: <path >/ Characterization
Trace_Ori: <path >/ Trace_Ori.txt
Layout Generation Set up:
Reliability -awareness: 0
New: 0
Plot_Solution: 1
Option: 2
Layout_Mode: 2
Floor_plan: 37.5 ,37.5
Num_of_layouts: 200
Seed: 10
Optimization_Algorithm: NG-RANDOM
Num_generations: 4
Electrical_Setup:
Model_Type: FastHenry
Measure_Name: Inductance
Measure_Type: 1
Device Connection Table
Device_Connection:
D1 1,0,0
D2 1,0,0
D3 1,0,0
D4 1,0,0
D5 1,0,0
D6 1,0,0
End_Device_Connection.
Source: L5
Sink: L1
Frequency: 1000 #kHz
End_Electrical_Setup
Thermal_Setup:
Model_Select: 2
Measure_Name: Temperature
Selected_Devices: D1,D2,D3 ,D4,D5,D6
#Device_Power: 10,10,10,10,10,10
Device_Power: 2.5 ,2.5 ,2.5 ,2.5 ,2.5 ,2.5
Heat_Convection: 350 ,350
Ambient_Temperature: 300
End_Thermal_Setup.

48

7. Once the optimization is complete the solution space will look like the one shown in Fig-
ure 37, 38, and 39 for NG-RANDOM, NSGAII, and MOPSO respectively..

2.4.3 Converter Layout Optimization (ongoing work)

Designing and optimizing high-density converters is extremely challenging as it requires designers
to have a broad knowledge of circuits, systems, packaging, manufacture, layout, testing, and cost
control. Power converter designers are still relying on FEM tools to perform computational-intensive
simulations one at a time and draw PCBs manually. The tedious and time-consuming approach is not
well-documented and still relies on experienced engineers. The converter level requires new design
features. Unlike power modules that rely on wire-bonding and thin devices, surface-mounted, and
bulky passive components must be supported. In addition, new design optimization algorithms, the
electrical model, and thermal metrics including static and transient junction temperature evaluation
must be considered.

Figure 40: Initial Bidirectional dc-dc converter

To illustrate the converter layout optimization capability, the initial layout of a bidirectional
dc-dc converter is shown in Figure 40. To optimize the power loop inductance from DC+ (L13)-to
DC- (L2) and the maximum temperature of the layout, the layout script needs to be generated.
Also, to represent the layout we need to have the following parts:
1. MOSFET, 2. Power Lead, 3. Signal Lead, 4. Capacitor, 5. Inductance. The steps are described
as follows:

Prepare all part files and save them in Part_Lib folder. So, this folder should have:
1. MOSFET1.part (Content is shown in Listing 16)
2. Power_Lead1.part (Content is shown in Listing 2)
3. Signal_Lead.part (Content is shown in Listing 3)
4. capacitor.part (Content is shown in Listing 17)
5. inductance.part (Content is shown in Listing 18)

49

Listing 16: MOSFET.part file content
Name CPM2 -1200 -0025B
Type component
Link https ://www.wolfspeed.com/downloads/dl/file/id/152/
product /2/ cpm2_1200_0025b.pdf
Footprint 4 6
Thickness 0.18
Material SiC
Pins Drain Source Gate

Drain 0 0 4 6 B
Source 0.335 0.35 3.5 4.5 T
Gate 1.03 5 0.5 0.5 T

Parasitics
Drain Source R:25e-3
Drain Gate R:1.1
Gate Source R:1.1

Listing 17: capacitor.part file content
Name CKG57NX7T2J105M500JH
Type component
Footprint 15 15
Thickness 5
Material Al_N

Listing 18: inductor.part file content
Name CKG57NX7T2J105M
Type component
Footprint 10 7
Thickness 5
Material Al_N

After that, follow the steps as shown in the 2D case to generate the macro script by running
the minimum-sized solution generation flow. Once the macro script and constraint file are updated,
the script will look like the listing 19. Here, we are generating a solution space with 400 solutions
using MOPSO optimization algorithm for Layout mode 1. Once the optimization is complete the
solution space will look like the one shown in Figure 41.

50

Listing 19: Macro script for optimization
Input scripts:
Layout_script: <path >/ layout_geometry_script.txt
Layer_stack: <path >/ layer_stack.csv
Parasitic_model: default
Fig_dir: <path >/Figs
Solution_dir: <path >/ Solutions
Constraint_file: <path >/ constraint.csv
Model_char: <path >/ Characterization
Trace_Ori: <path >/ Trace_Ori.txt
Layout Generation Set up:
Reliability -awareness: 0
New: 0
Plot_Solution: 1
Option: 2
Layout_Mode: 1
Floor_plan: 60,80
Num_of_layouts: 400
Seed: 10
Optimization_Algorithm: MOPSO
Num_generations: 9
Electrical_Setup:
Model_Type: FastHenry
Measure_Name: Inductance
Measure_Type: 1
Device Connection Table
Device_Connection:
D1 1,0,0
D2 1,0,0
D3 1,0,0
D4 1,0,0
End_Device_Connection.
Source: L3
Sink: L2
Frequency: 1000 #kHz
End_Electrical_Setup
Thermal_Setup:
Model_Select: 2
Measure_Name: Temperature
Selected_Devices: D1,D2,D3 ,D4
Device_Power: 10,10,10,10
Heat_Convection: 150
Ambient_Temperature: 300
End_Thermal_Setup.

51

Figure 41: MOPSO Solution space for converter layout

More sample design cases are provided in the package (Sample_Designs folder). Those exam-
ples can help the user preparing own test cases.

3 PowerSynth-Related Publications

This section contains a list of all the current publications related to PowerSynth as of the date of
this document.

1. P. Tucker, "SPICE netlist generation for electrical parasitic modeling of multi-chip power
module designs," 2013.

2. B. W. Shook, A. Nizam, Z. Gong, A. M. Francis and H. A. Mantooth, "Multi-objective lay-
out optimization for multi-chip power modules considering electrical parasitics and thermal
performance," in Control and Modeling for Power Electronics (COMPEL), 2013 IEEE 14th
Workshop on, 2013.

3. B. W. Shook, Z. Gong, Y. Feng, A. M. Francis and H. A. Mantooth, "Multi-chip power module
fast thermal modeling for layout optimization," Computer-Aided Design and Applications, vol.
9, pp. 837-846, 2012.

4. B. W. Shook, "The Design and Implementation of a Multi-Chip Power Module Layout Syn-
thesis Tool," 2014.

5. J. Main, "A Manufacturer Design Kit for Multi-Chip Power Module Layout Synthesis," 2017.

6. Q. Le, T. Evans, S. Mukherjee, Y. Peng, T. Vrotsos and H. A. Mantooth, "Response surface
modeling for parasitic extraction for multi-objective optimization of multi-chip power modules
(MCPMs)," in Wide Bandgap Power Devices and Applications (WiPDA), 2017 IEEE 5th
Workshop on, 2017.

52

7. Q. Le, S. Mukherjee, T. Vrotsos and H. A. Mantooth, "Fast transient thermal and power
dissipation modeling for multi-chip power modules: A preliminary assessment of different
electro-thermal evaluation methods," in Control and Modeling for Power Electronics (COM-
PEL), 2016 IEEE 17th Workshop on, 2016.

8. Z. Gong, "Thermal and electrical parasitic modeling for multi-chip power module layout syn-
thesis," 2012.

9. S. Mukherjee et al, "Toward Partial Discharge Reduction by Corner Correction in Power
Module Layouts," in Control and Modeling for Power Electronics (COMPEL), pp. 1–8, Jun
2018.

10. I. Al Razi et al, "Constraint-Aware Algorithms for Heterogeneous Power Module Layout
Synthesis and Reliability Optimization," in Wide Bandgap Power Devices and Applications
(WiPDA), pp. 323–330, Oct 2018.

11. T. Evans, Q. Le, S. Mukherjee, I. Al Razi, T. Vrotsos, Y. Peng and H. A. Mantooth, "Power-
Synth: A Module Layout Generation Tool," in IEEE Transactions on Power Electronics, vol.
34, no. 6, pp. 5063–5078, Jun 2019, Highlighted Paper.

12. Q. Le et al, "PEEC Method and Hierarchical Approach Towards 3D Multichip Power Module
(MCPM) Layout Optimization", in Proc. IEEE International Workshop on Integrated Power
Packaging, pp. 131–136, Apr 2019.

13. I. Al Razi et al, "Hierarchical Layout Synthesis and Design Automation for 2.5D Heterogeneous
Multi-Chip Power Modules", in Proc. IEEE Energy Conversion Congress and Exposition, pp.
2257-2263, Sep 2019.

14. T. Evans et al, "Development of EDA Techniques for Power Module EMI Modeling and Layout
Optimization", in Proc. IMAPS International Symposium on Microelectronics, pp. 193-198,
Oct 2019.

15. Y. Peng et al, "PowerSynth Progression on Layout Optimization for Reliability and Signal
Integrity", IEICE Nonlinear Theory and Its Applications, vol. 11, no. 2, pp. 124-144, Apr
2020, Invited Paper.

16. I. Al Razi et al, "Physical Design Automation for High-Density 3D Power Module Layout
Synthesis and Optimization", in Proc. IEEE Energy Conversion Congress and Exposition, pp.
1984–1991, Oct 2020..

17. T. Evans et al, "Electronic Design Automation Tools and Considerations for Electro-Thermo-
Mechanical Co-Design of High Voltage Power Modules", in Proc. IEEE Energy Conversion
Congress and Exposition, pp. 5046–5052, Oct 2020.

18. S. Mukherjee et al, "General Equation to Determine Design Rules for Mitigating Partial Dis-
charge and Electrical Breakdown in Power Module Layouts", in Proc. IEEE Workshop on
Wide Bandgap Power Devices and Applications in Asia, pp. 1–6, Sep 2020.

19. I. Al Razi et al, "PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module",
in Proc. IEEE Applied Power Electronics Conference, pp. 1516-1523, Jun 2021.

20. Q. Le et al, "PowerSynth Integrated CAD Flow for High Density Power Modules", in Proc.
IEEE Design Methodologies Conference, pp. 1-6, Jul 2021.

53

21. T. Evans et al, "Placement and Routing for Power Module Layout”, in Proc. IEEE Design
Methodologies Conference, pp. 1-6, Jul 2021.

22. J. Mitchener et al, "Designing a Graphical User Interface for the Power Module Optimization
Tool PowerSynth”, in Proc. ASEE Midwest Section Conference, pp. 1-12, Sep 2021.

23. Q. Le et al,"Fast and Accurate Inductance Extraction For Power Module Layout Optimization
Using Loop-Based Method”, in Proc. IEEE Energy Conversion Congress and Exposition, pp.
1358-1365, Oct 2021.

24. I. Al Razi et al,"Hierarchical Layout Synthesis and Optimization Framework for High-Density
Power Module Design Automation”, in Proc. International Conference on Computer-Aided
Design, pp. 1-8, Nov 2021.

25. I. Al Razi et al, "PowerSynth Design Automation Flow for Hierarchical and Heterogeneous
2.5D Multi-Chip Power Modules”, IEEE Transactions on Power Electronics, vol. 36, no. 8,
pp. 8919–8933, 2021.

26. Q. Le et al,"Thermal Runaway Mitigation through Electrothermal Constraints Mapping for
MCPM Layout Optimization”, in Proc. IEEE Design Methodologies Conference, pp. 1-6, Sept
2022.

27. I. Al Razi et al, "Electromigration-Aware Reliability Optimization of MCPM Layouts Using
PowerSynth”, in Proc. IEEE Energy Conversion Congress and Exposition, pp. 1-8, Oct 2022.

28. Q. Le et al,"Fast and Accurate Parasitic Extraction in Multichip Power Module Design Au-
tomation Considering Eddy-Current Losses”, IEEE Journal of Emerging and Selected Topics
in Power Electronics, 2022.

29. I. Al Razi et al, "PowerSynth 2: Physical Design Automation for High-Density 3D Multi-Chip
Power Modules", IEEE Transactions on Power Electronics, vol. 38, no. 4, pp. 4698-4713,
2023.

30. M. Sanjabiasasi et al, "A Comparative Study on Optimization Algorithms in PowerSynth 2”,
Proc. IEEE Design Methodologies Conference, Sep 2023.

31. Z. Saadatizadeh et al, "Automated Layout Optimization Methods of a Bidirectional DC-DC
ZVS Converter Using PowerSynth”, Proc. IEEE Design Methodologies Conference, Sep 2023.

3.1 Useful Links

• Release Website: https://e3da.csce.uark.edu/release/PowerSynth/

• Publication Website: https://e3da.csce.uark.edu/pub/

4 Authors

The PowerSynth tool development has been ongoing for more than a decade now and the current
PowerSynth team appreciates efforts from quite a few number of graduate students and numerous
undergraduate students over the years. We are grateful to Yugo Isogai, an undergrad from Electrical
Engineering Department for his effort on the MDK editor GUI development and REU student Joshua
Mitchener for his effort on the PowerSynth 2.0 GUI development. In addition, we would like to thank
Dr. Zahra Saadatizadeh, and David Agogo-Mawuli, for their contributions on PowerSynth 2.1.

54

https://e3da.csce.uark.edu/release/PowerSynth/
https://e3da.csce.uark.edu/pub/

4.1 Graduate Research Assistants/ Graduates

The PowerSynth research and development team worked on this version (v2.1) consisting of two
recent graduates and a Ph.D. student. A brief introduction to the authors are as follows:

• Mehran Sanjabiasasi
Ph.D. Student in Computer Engineering, 2023
Electrical Engineering and Computer Science Department
University of Arkansas, Fayetteville, AR, USA.

• Imam Al Razi
Ph.D. in Computer Engineering, 2022
Computer Science and Computer Engineering Department
University of Arkansas, Fayetteville, AR, USA.

• Quang Le
Ph.D. in Electrical Engineering, 2022
Electrical Engineering Department
University of Arkansas, Fayetteville, AR, USA.

• Tristan M. Evans
Ph.D. in Electrical Engineering, 2023
Electrical Engineering Department
University of Arkansas, Fayetteville, AR, USA.

• Shilpi Mukherjee
Ph.D. in Microelectronics and Photonics, 2023
Microelectronics and Photonics Department
University of Arkansas, Fayetteville, AR, USA.

4.2 Supervisors

• Dr. Homer Alan Mantooth
Distinguished Professor, The Twenty-First Century Research Leadership Chair in Engineering
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA.
Phone: 479-575-4838
Email: mantooth@uark.edu

• Dr. Yarui Peng
Assistant Professor
Computer Science and Computer Engineering Department
University of Arkansas, Fayetteville, AR, USA.
Phone: 479-575-6043
Email: yrpeng@uark.edu

55

	Introduction
	Executive Summary
	PowerSynth Introduction
	About Version 2.1

	Organization
	PowerSynth 2 Architecture
	User Interfaces and Design Input
	Layout Engine
	Performance Evaluation Models
	Design Optimization and Solution Export

	Using PowerSynth v2.1
	Installation and Usage
	Requirements
	Technology Library Content
	Initial Layout Description
	Constraints

	PowerSynth 2.0 GUI Introduction
	Walk-Through Three Examples
	2D MCPM Layout Optimization
	3D MCPM Layout Optimization
	Converter Layout Optimization (ongoing work)

	PowerSynth-Related Publications
	Useful Links

	Authors
	Graduate Research Assistants/ Graduates
	Supervisors

