
Mixed-Signal Computer-Aided Deisgn (MSCAD) Laboratory
Energy-Efficient Electronics and Design Automation (E3DA) Laboratory

PowerSynth User Manual
Version 1.9

https://mscad.uark.edu/
https://e3da.csce.uark.edu/

Contents

1 Introduction 2
1.1 Executive Summary . 2

1.1.1 PowerSynth Introduction . 2
1.1.2 About Version 1.9 . 2

1.2 Organization . 2
1.3 PowerSynth v1.9 Architecture . 3

1.3.1 Manufacturer Design Kit (MDK) . 3
1.3.2 Hierarchical Constraint-Aware Layout Engine 3
1.3.3 Performance Evaluation Models . 5
1.3.4 Optimization Algorithm . 5
1.3.5 Post-Optimization and Solution Export . 6

2 Using PowerSynth v1.9 6
2.1 Installing and Running PowerSynth v1.9 . 6
2.2 Requirements . 6

2.2.1 Technology Library Content . 6
2.2.2 Initial Layout Description . 11

2.3 Macro Script Content . 15
2.3.1 Input Scripts . 15
2.3.2 Layout Generation and Optimization Setup 16

2.4 Folder Organization . 19
2.5 Walk-Through an Example . 21

3 PowerSynth-Related Publications 29
3.1 Useful Links . 30

4 Authors 31
4.1 Graduate Research Assistants . 31
4.2 Supervisors . 31

1

1 Introduction

1.1 Executive Summary

1.1.1 PowerSynth Introduction

PowerSynth is an electronic design automation (EDA) tool that can synthesize and optimize multi-
chip power module (MCPM) layouts with significantly faster than any commercial tools. PowerSynth
currently performs multi-objective optimization to produce Pareto-front solutions to the proper
placement of power semiconductor device die and the routing of metal traces on ceramic substrates.
The tool accounts for temperature distributions and electrical parasitics as a function of the layout
geometries that it considers. This tool has been hardware-validated. Continued research on this
project will further elaborate the capabilities by extending the work to greater fidelity in thermal,
electrical, and mechanical domains.

1.1.2 About Version 1.9

As a part of PowerSynth continuous research and development, this version (v1.9) offers a command
line interface to the users with a significant improvement in layout representation and generation
methodology. Some of the major features in this version include:

• Generic layout representation technique for complex (2D/2.5D) geometry handling.

• Hierarchical constraint-aware, generic, efficient, and scalable layout generation methodology.

• Heretogeneous components handling.

• Rigid and flexible bonding wire connections.

• Voltage-current dependent reliability constraints handling.

• Arbitrary number of passive layers in the layer stack.

• Initial(single) layout performance evaluation.

• Partial element equivalent circuit (PEEC) based electrical model.

• Hardware-validated, fast, and accurate thermal model.

It is recommended that the user reads the manual of the previous version (v1.4) to have a better
understanding of the feature-wise differences in between this and the old version. The previous ver-
sions of PowerSynth had graphical user interface (GUI) and some features like 3D solution browser,
export to 3D modeling and FEA tools, and these features will be added back in our upcoming release
(v2.0) with 3D MCPM layout optimization capability.

1.2 Organization

After a brief introduction to PowerSynth v1.9 architecture, this document introduces the command
line workflow. This document will show the user how to prepare the necessary files, and parameters
for using this version. Then, this document walks the user through the steps to optimize a sample
2D half-bridge power module.

2

Python/Matlab API

External Models & Tools

Post-Optimization & Solution Browser

Complete

Solution Space

High E-Field

Filleting

Export Functions

Thermal

Parasitics

EMI

Static Thermal

Transient Thermal

Stress

Reliability

Manufacturer
Design Kit (MDK)

Layout Geometry
Script

Q3D

SolidWorks

SPICE

 EMPro

Corner-Stitch Constraint Graph

Hierarchical Layout Generation Algorithms

Hierarchical Layout Engine

Models & Optimization Algorithms

Electrical Mechanical

Design

Pareto-Front

Input/Output Computationl Core

Figure 1: PowerSynth architecture (v1.9)

1.3 PowerSynth v1.9 Architecture

Since the very first version of PowerSynth (v1.0), some new models are developed to incorporate
new objectives for optimization, and some features have been added to add more capabilities over
time. The latest architecture in v1.9 release is shown in Figure 1.

1.3.1 Manufacturer Design Kit (MDK)

In the Integrated Circuit (IC) design industry, the Process Design Kit (PDK) is one of the most im-
portant intellectual properties (IPs) from foundries to enable the design process. Similarly, for power
module fabrication, a certain rule set has to be followed from the beginning of the layout design. This
ruleset includes materials, devices, leads, bonding wires information, and design constraints with a
technology layer stack. To ensure fabrication-ready layouts, a Manufacturer Design Kit (MDK) has
been integrated with PowerSynth that contains an interactive material library, design constraints
interface, and technology library. Since this version does not have a GUI to interact, the necessary
information (materials, design constraints, layer stack) from the MDK are fed through CSV files. In
stead of the technology library GUI, in this version, the components (devices, leads, bonding wires)
information are taken through text files. Once the GUI is re-integrated with the upcoming version
(v2.0), all those libraries will be interfaced with graphics.

1.3.2 Hierarchical Constraint-Aware Layout Engine

The methodology of generating a layout solution is the backbone of the tool. In the latest version,
the matrix-based methodology has been replaced by a more generic, efficient, and scalable one using
the hierarchical corner stitch data structure with constraint graph evaluation techniques. This layout

3

engine takes design constraints from the MDK together with an initial geometry script from the user
as input to process the layout. With this methodology, an arbitrary number of components can be
handled by applying generic and time-efficient algorithms. The significant improvements with the
hierarchical constraint-aware layout engine are:

• An interactive constraint input feature which is helpful for user to specify or modify design
constraint values to have different layout structures.

• Three types of layout generation capability: minimum-sized layout, variable floorplan sized,
and fixed floorplan sized.

• As the engine takes into account of all design constraints in the layout generation phase, it
always generates 100% manufacture-able solutions.

• The updated layout engine can incorporate different types of optimization algorithms (i.e.,
genetic algorithm, gradient-based approach, stochastic approach, randomization)

• This layout engine treats each component as rectangle, so geometrical complexity is not a
problem.

• This engine can process broader range of layouts even considering heterogeneous components
(e.g. gate drivers, EMI filters, sensors, etc.).

• As the updated layout engine is constraint-aware, different types of constraints can be declared :
design constraints, reliability constraints, user-defined constraints. Generated solutions always
satisfy all the given constraints.

Methodology
From the user-defined initial input script, using corner stitch data structure (used in Magic VLSI
tool), a collection of rectangular tiles are stored in a hierarchical tree structure. Based on design
constraints, constraint graphs (popular in VLSI floorplan compaction) are created for each corner-
stitched plane. Two types of constraint graphs are consdiered: horizontal constraint graph (HCG)
and vertical constraint graph (VCG) for maintaining horizontal and vertical relationship among
components. These constraints are evaluated using the longest path algorithm and the results are
propagated through the tree. Bottom-up constraint propagation and top-down location propagation
algorithms are implemented to generate solution. Detail algorithms can be found in [13]. Some
concepts associated with layout generation are described as follows:

• Constraints: Two types of constraints are considered: (a) design constraints, (b) reliability
constraints.

(a) Design Constraints: These are standard design rules from the manufacturer. Three
types of design constraints are considered.

1. Dimension Constraints: Here, minimum width along x-axis (Min Width), minimum
width along y-axis (Min Height) and minimum enclosure (Min Enclosure) are specified
for each type of component.

2. Spacing Constraints: In this table, minimum spacing values between every pair of
components are declared.

3. Enclosure Constraints: When a component is placed on top of another component,
there may be some minimum enclosure value. So, this table has all possible minimum
enclosure values.

4

(b) Reliability Constraints: These constraints are user-defined based on the high-voltage-
current applications. To minimize partial discharge phenomena, and increase the reliability of
the power module, user can define voltage-dependent minimum spacing and current-dependent
minimum width constraints.

• Operating Modes: Based on the evaluation of the constraint graphs, there are three modes
of operation (shown in Table 1).

Table 1: Summary of operating modes

Mode Purpose Evaluation Methodology
0 Minimum sized layout Minimum constraint values

1 Variable floorplan layouts All weights are randomized with minimum constraints.
No maximum constraints

2 Fixed floorplan layouts All weights are randomized with minimum constraints.
Some have maximum constraints

– Minimum Size Layout: This layout is generated using all minimum constraint values.
So, this layout reflects maximum possible power density for a layout. As this is the
minimum sized solution, it is electrically optimized but thermal performance is so poor.

– Variable Size Layout: If this mode is selected, all constraint values are randomized
and new layout solution is generated. User can generate arbitrary number of valid layout
solutions with different floorplan size.

– Fixed Size Layout: All edge weights are randomized within given area to generate
arbitrary number of solutions. As floorplan size is always fixed there is less variation in
this mode than the previous one.

1.3.3 Performance Evaluation Models

The electrical model has been updated to consider both self and mutual inductance, resistance, and
capacitance. This is a PEEC-based model, which uses adaptive meshing and calculates parasitics
more accurately than the previous response surface model. This model is described in [12]. The
latest PowerSynth architecture is based on a modular approach so that the optimizer is flexible
in accepting various models through application programming interfaces (APIs) while evaluating
performance metrics. For example, the Army Research Lab (ARL) has developed a 3D thermal
and stress evaluation tool called ParaPower. To incorporate their thermal and stress model, a
PowerSynth-ParaPower API has been developed to allow PowerSynth to use ParaPower for thermal
and stress evaluations. However, in this version, this model has not been incorporated as the
PowerSynth fast thermal model (described in [11]) is accurate and faster for any 2D/2.5D module.
The ParaPower stress and thermal model, and another SPICE-based transient thermal model will
be incorporated in the next release.

1.3.4 Optimization Algorithm

In this version, the built-in solution generator algorithm "Non-guided randomization"([10]) has been
provided as an optimization algorithm. Though this algorithm does not account for any specific
objective, this can generate a larger solution space than the genetic algorithm, which can eventually
find a better solution. The genetic algorithm implementation is on-going and will be incorporated
in the upcoming release.

5

1.3.5 Post-Optimization and Solution Export

In this version, along with the Pareto-front solutions, an entire solution space is also reported
after optimization. Moreover, for each solution, the layout geometry is also exposed in a CSV file
containing each component’s coordinates, width, and length. This information helps a designer to
regenerate the geometry script for the solution layout. Though the automatic export to commercial
FEA tools like ANSYS Q3D, and SolidWorks feature is disabled in this command line version, it
will be back with the next release GUI version.

2 Using PowerSynth v1.9

2.1 Installing and Running PowerSynth v1.9

To install PowerSynth v1.9, run the PowerSynth install wizard. It will take some time to install.
Upon installation, the user can run PowerSynth v1.9 executable.
Note: It is STRONGLY RECOMMENDED that you install PowerSynth in the C drive (the de-
fault installation directory) and NOT in Program Files. Installing PowerSynth in Program Files can
result in various issues relating to administrator permissions.
To run the commandline version, the steps are as follows:
1. Start a command prompt as administrator.
2. Go to the directory of "PowerSynth.exe".
3. Run PowerSynth by entering the command: PowerSynth.exe.
4. The command prompt will ask for the location of the "Settings.info" file. This file is already
provided with the package.
5. Upon entering the location of the "Settings.info" file, hit enter.
6. Now, it will ask for the "Macro script" file location.
7. Sample "Macro script" is provided in the "Sample_Projects" folder inside the package. You
can use any of the test case macro script file location to test it or you can create your own test case.
Details of preparing a "Macro script" are described in Section 2.2.
8. Upon entering the "Macro script" file location, PowerSynth will execute necessary steps ac-
cording to the option specified in the "Macro script".

So, to run PowerSynth v1.9, user needs to files: (a) Settings file, and (b) Macro script. Since
the Settings file is provided with the package, the user needs to create a Macro script only to
run a layout optimization. So, in the following subsections, the Macro script prepartion details
are described.

2.2 Requirements

2.2.1 Technology Library Content

To design a standard 2D/2.5D power module (shown in Figure 2), the key elements are as follows:
1. Baseplate
2. Substrate (Direct Bonded Copper (DBC): Back-side metal, Ceramic, Top-side metal)
3. Components (Devices: MOSFETs, Diodes, IGBTs, Capacitors, etc.)
4. Connectors (Leads: power and signal)
5. Bonding wires.

Since the technology library is not integrated with this version, these elements information are
taken through files. The files associated with these elements are as follows:

6

Figure 2: Standard 2D power module

1. Layer stack (.csv file)
2. Parts (.part file)
3. Wires (.wire file)
4. Constraints (.csv file)
Each file content is described below:

1. Layer stack: This file provides the dimensions, material information about baseplate, and
substrate. These information are taken input as a CSV file. A sample layer stack is shown in
Table 2. The file has eight columns:
1. ID: An integer to uniquely identify each layer.
2. Name: Each layer needs to have a name (i.e., B1 for Baseplate layer 1, M1 for substrate
backside metal 1, D1 for dielectric layer 1 of the substrate, I1 for interconnect layer 1 of the
substrate, and C1 for component layer 1). Since this version supports multi-layer stacked
DBC, all layers except the component layer can be multiple.
3. Width: Defines width of each layer in mm.
4. Length: Defines length of each layer in mm.
5. Thickness: Defines thickness of each layer in mm.
6. Material: Name of the corresponding layer material (needs to be same as in material library
(i.e., MATERIAL_LIB_PATH in the settings.info file)).
7. Type: Two types are allowed: p for passive and a for active. Only component layer is an
active layer and rest of the layers are passive.
8. Electrical: This field is for electrical performance evaluation. Here, F for floating, G for
ground, D for dielectric, S for signal, and C for component.

Table 2: Content in a layer stack file

ID Name Width Length Thickness Material Type Electrical

1 B1 50 60 1 copper p F

2 M1 42 52 0.2 copper p G

3 D1 40 50 0.64 Al_N p D

4 I1 40 50 0.2 copper p S

5 C1 40 50 0.18 None a C

7

Since, this version supports only layer-based geometry, the component layer (ID=5 in Table 2)
thickness and material information are optional.

2. Parts: The components (devices) and connectors (leads) are considered as parts in this version.
The dimensions, material information of these elements are taken from corresponding .part file.
These files are written in a text editor and saved as .part extension. A sample MOSFET.part
and power_lead.part file content are shown in Figure 3 (a), (b), respectively.

Name CPM2-1200-0025B

Type component

Link

https://www.wolfspeed.com/downloads/dl/file/id/152/product/2/cpm2_1200_0025b.pdf

Footprint 4 6

Thickness 0.18

Material SiC

Pins Drain Source Gate

Drain 0 0 4 6 B

Source 0.335 0.35 3.5 4.5 T

Gate 1.03 5 0.5 0.5 T

Parasitics

Drain Source R:25e-3

Drain Gate R:1.1

Gate Source R:1.1

Name PL1

Type connector

Footprint 6 2

Thickness 2

(a) (b)

Figure 3: Content in (a) MOSFET.part, (b) power_lead.part file

In Figure 3 (a), each row has a key name e.g. “Name” and a value separated by a space e.g.:
“CPM2-1200-0025B”. The definition for each key is as follows:
Name: Name of the Part
Type: There are 2 options: component (device like MOS, diode, capacitor, etc.) or connector
(terminals like power lead, signal lead, etc.)
Link: A link to the part datasheet
Footprint: Width <space> Length (Provide the footprint of the component in mm)
Thickness: Thickness of the component (in mm)
Material: Name of the Material (e.g., SiC) [should match with material library from MDK
(materials.csv file in MATERIAL_LIB_PATH of "settings.info" file.)]
Pins [list of preferred pin names separated by space]: Provide a list of pin names
Pin_name: For each pin provide a pin pad rectangle (bottom-left coordinate x <space> y
<space> width <space> height) reference to the component bottom left corner. At the end
of the pin rectangle add a keyword B or T to distinguish between Bottom and Top side pins.
Parasitics: Used to provide component internal parasitic information.
Pin_name1 <space> Pin_name2 <space> R: R_val <space> L:L_val <space> C:C_val
Provide a list of RLC value between every 2 pins (with internal parasitics)

For different devices, the keys need to be same, but the values will be changed depending on
the device type. In Figure 3 (b), each row has a key, value pair separated by a space.The
definitions for each key are similar to those in Figure 3 (a).

In this version, the footprint dimensions declared in the .part files need to be always integer.
However, the user can change the footprint dimensions into the floating point numbers in the

8

constraint file (described in the "Constraint File" section). Also, all .part files need to be saved
in the "Part_Lib" folder. More sample .part files are provided in the "Sample_Projects" folder
inside "Part_Lib".

3. Wires: The wire standard, resistivity, and radius information are stored in a *.wire file. The
file content are written in a text editor and saved as .wire extension. Content of a sample wire
file is shown in Figure 4.

JEDEC-4 points

Resistivity 2.7E-8

Radius 0.15

Figure 4: Content in a *.wire file

In the *.wire file, the first line is the wire bonding standard. This will affect the parasitic
extraction of the bond wire group. The second line is the resistivity of the material. This is
used to compute the parasitic resistance of the wire (unit is Ωm). The third line is used to
provide the radius of the wire in mm. For bond wire with square cross section, the effective
radius can be used. In the last two lines, there is a space in between key and value. All *.wire
files need to be saved in "Wire_Lib" folder.

4. Constraints: The minimum constraint values are given as input through a CSV file. Gen-
erally, for each layout the constraint file is automatically populated with some default values.
However, the user can always modify the values according to the manufacturer requirements.
Since in this version, two types of constraints (i.e., standard design constraints, and reliability
constraints) are considered, the default constraint table generates minimum standard design
constraints and the user needs to set a flag (‘Reliability-awareness’) to indicate that the
reliability constraints are available (high voltage application). The description about the flag
usage is in Section 2.3. The default constraint file content for the sample layout in Fig. 7 is
shown in Fig. 5.

9

Min Dimensions EMPTY power_trace signal_trace bonding wire pad power_lead signal_lead MOS

Min Width 1 2 2 1 3 1 6

Min Height 1 2 2 1 3 1 4

Min Extension 1 2 2 1 3 1 6

Min Spacing EMPTY power_trace signal_trace bonding wire pad power_lead signal_lead MOS

EMPTY 0.5 0.5 0.5 0.5 0.5 0.5 0.5

power_trace 0.5 0.5 0.5 0.5 0.5 0.5 0.5

signal_trace 0.5 0.5 0.5 0.5 0.5 0.5 0.5

bonding wire pad 0.5 0.5 0.5 2 0.5 0.5 0.5

power_lead 0.5 0.5 0.5 0.5 0.5 0.5 0.5

signal_lead 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MOS 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Min Enclosure EMPTY power_trace signal_trace bonding wire pad power_lead signal_lead MOS

EMPTY 1 1 1 1 1 1 1

power_trace 1 1 1 1 1 1 1

signal_trace 1 1 1 1 1 1 1

bonding wire pad 1 1 1 1 1 1 1

power_lead 1 1 1 1 1 1 1

signal_lead 1 1 1 1 1 1 1

MOS 1 1 1 1 1 1 1

Figure 5: Content in a constraint file with minimum design constraints only

In Figure 5, the highlighted (red/green) fields are representing constraint names. The blue
colored fields are representing the elements in the layout. All elements are directly related
to the layout geometry description script (shown in Figure 7) except the "EMPTY" field.
This type represents the etched area on top of a DBC, which means any area where there
is no copper. Rest of the fields are for constraint values. In any power module, in this
PowerSynth version, it is assumed that there will be at least three elements: power trace,
signal trace, and bonding wire pad. Rest of the elements are dynamically changing depending
on the initial layout. For example, in the Figure 5, there are power lead, signal lead, and
MOS because the corresponding layout description script from Figure 7 has three components
in the ‘# Definition section. If any layout has more components or other components, the
corresponding fields will appear in the constraint file.

If the Reliability-awareness flag is set, then along with the minimum design constraints
shown in Figure 5, additional content is populated in the same constraint file. The additional
rows in the csv file for the sample layout in Figure 7 is shown in Figure 6. Here, first few
lines are for voltage and current specifications with default value 0. The user needs to modify
the values according to the specific requirements. In the voltage and current specification
sections, there are four fields to describe the voltage and current loading for each island (con-
nected group of traces) as all waveforms are considered in generic sinusoidal form: A+ B sin
(2πft + θ). Here, A= DC magnitude (V/A), B= AC magnitude (V/A), f= Frequency, θ =
Phase angle. So, while providing the values, the waveform needs to be fit in the equation and
then the coefficient values need to be provided. If there are multiple traces in an island, one
trace will be appeared in the constraint table as all traces on the same island are connected.
For example, in the constraint table shown in Figure 6, only T1.4 has appeared as T1.4,
T2.4, and T3.4 are on same island in Figure 7.
Once the waveforms are defined, the voltage-dependent minimum spacing and current-
dependent minimum width values need to declared in the last two sections (highlighted in

10

Figure 6: Content in a constraint file associated with the reliability constraints

red color). For voltage difference vs minimum spacing, user can add rows depending on the
expected voltage difference levels in the layout. The voltage difference calculation method can
be found in [15]. For example, if the user is expecting 3 voltage differences like 0V, 1000V,
2000V, three rows need to be added in this section with the corresponding minimum spacing
values. Similarly, for the current rating vs minimum width constraints, user needs to add rows
depending on the requirements. The voltage differences and current ratings in the constraint
table need to increase with a constant value. If the calculated voltage difference between two
traces is in between two values provided in the constraint table, it will choose the upper bound
for safety. For example, if the user has 0 V, 1000 V, 2000 V voltage differences, and the
calculated voltage difference is 1500 V, the constraint value that will be applied is for the 2000
V difference case.

The user can open the constraint file and edit the values and save it in the same location. No
renaming is required. While assigning the constraint values, care needs to be taken to make
sure the constraints are valid.

2.2.2 Initial Layout Description

Once the technology library related files are ready, the initial layout needs to be described through
the text (.txt) files. Two files are required to describe an initial layout of a power module:
1. Layout geometry description script
2. Bonding wires connection description file.
Each of the file content is described below in detail:

1. Layout geometry description script: This script is a text (.txt) file to input the initial
layout geometry of the layout. This script contains the initial placement and routing of the
components, and connectors. A sample script file content is shown in Figure 7. The file has

11

Definition

power_lead ../../Part_Lib/power_lead.part

signal_lead ../../Part_Lib/signal_lead.part

MOS ../../Part_Lib/MOS.part

#Layout Information

46 32

+ T1 signal 2 2 42 6 4

- T2 signal 2 8 4 14 4

- T3 signal 40 8 4 14 4

+ B1 signal 4 18 1 1 5

+ B2 signal 41 18 1 1 5

+ L1 signal_lead 21 3 5

+ T4 power 8 10 8 14 4

- T5 power 30 10 8 14 4

- T6 power 8 24 30 6 4

+ L3 power_lead 21 25 5

+ D1 MOS 31 16 5

+ B3 power 32 18 1 1 5

+ B4 signal 35 18 1 1 5

+ D2 MOS 9 16 R180 5

+ B5 signal 10 18 1 1 5

+ B6 power 13 18 1 1 5

+ T7 power 18 10 10 10 4

+ L2 power_lead 21 12 5

+ B7 power 19 18 1 1 5

+ B8 power 26 18 1 1 5

Figure 7: Content in a layout geometry description script

two sections:
(a) Definition
In this part, the necessary parts (.part) file locations are provided. Anything below the tag
“#Definition” and up to the tag “#Layout Information" in the script are considered in this
section. For any new test case, the tags should not be changed. Also, a blank line is required
in between two sections (as shown in Figure 7).
The user can use any keywords to represent a component or connector which is defined by the
*.part file. These keywords need to be reused in the “#Layout Information" section. In the
“#Definition” section, in each line, there are two segments:
<segment1> <space> <segment2>.
<segment1> is the keyword of the component or connector (MOS, Diode, IGBT, power_lead,
signal_lead, etc.)
<segment2> is the relative location of the component.part file.

12

(b) Layout Information
This section describes the layout geometry and component hierarchy information for the layout
engine. Anything below the tag “#Layout Information” are used to describe the layout geom-
etry. The geometry should be described hierarchically and the hierarchical order is bottom-to-
top. For example, in the sample script shown in Figure 7, T4, T5, T6 are connected traces and
together create an island. This island should be declared first and then the devices or leads
on top of it need to be declared. Each island can be composed of single or multiple traces.
All connected traces in the same island needs to be declared at same hierarchy level. The
declaration should start with a ‘+’ character and other connected components need to start
with a ‘-‘ character. All components in each connected group should be of the same type (i.e.,
power traces or signal traces).

Each hierarchy level is separated by a ‘tab’ in the script and we currently support up to 3
levels of hierarchy (2 tabs) in this version (Trace->Device->Pin). Also, in the input script, the
coordinates should be given as integer values. However, in the constraint table, the fractional
constraint value is allowed up to 3rd decimal point.

All of the width and height information for devices or leads are directly read from the corre-
sponding “.part file” mentioned in the Definition section. So, these components do not have
width or height information specified in the layout geometry description script, whereas others
(e.g., traces and bond wire pads) have width and height fields.

To have a bond wire, the source pad and destination pad of the bond wire needs to be aligned
according to the wire orientation. For example, in the sample script (shown in Figure 7),
the gate signal is connected from B4 to B2 (Bonding wires connection description file
section). B4 is on top of the gate pad of D2. So, B4 and B2 should have the same y coordinate
as this represents a horizontal bond wire connection. The bond wire pad is always a square
with size of 1 mm in the input script, even though it is considered as a point connection in
the algorithms.

Description of each line in the ’#Layout Information’ section:
Line1: size of initial layout (width (along X-axis), height (along Y-axis))
Line2-to-end: each line has several fields:
For all routing paths (Traces, Bond wire pads) have 8 fields:
1. ‘+/-’ : Connectivity definition character
2. ‘ID’ : layout component id (T1: Trace 1, T2: Trace 2, B1: Bond wire pad 1,etc.)
3. ‘type of component’: for traces, bond wire pads-> power or signal
4. x coordinate: bottom left corner’s x coordinate
5. y coordinate: bottom left corner’s y coordinate
6. width: width of the rectangle (along x axis)
7. height: height of the rectangle (along y axis)
8. layer_id: id of the layer(value is taken from the layer stack)
For all parts (Devices, Leads) have 6-7 fields:
1. ‘+/-’ : Connectivity definition character
2. ‘ID’ : layout component id (D1: Device 1, L1: Lead 1,etc.)
3. ‘type of component’:
for devices-> name (should match with definition part) (MOS,Diode, IGBT, etc.)
for leads-> name of lead (power_lead or signal_lead or neutral_lead)
4. x coordinate: bottom left corner’s x coordinate
5. y coordinate: bottom left corner’s y coordinate
6. Rotate angle: R90(90°rotation), R180(180°rotation), R270(270°rotation)

13

7. Layer_id: id of the layer(component layer id in the layer stack)
Please note that in this release, while creating a new layout geometry description script, no
extra space/tab/new line is allowed after each line and at the end of the script. Also, the
coordinates of the elements on the same island (connected group) are correlated to each other.
To get the best results, this coordinate correlation needs to be minimized in the initial layout
description script. For better results, the bond wire coordinates should not be correlated with
any other coordinates. To test if the updated constraints and initial layout description script
are valid, please generate a minimum-sized solution. If there is an error in layout generation,
the constraint values may not be feasible. Also, if the minimum-sized solution is not a feasible
one, there is probably a correlation issue. Try to break correlations in the input script and
run again. This can be a trial and error process where the user needs to play with the input
script until a feasible minimum-sized solution is found.

2. Bonding wires connection description file: This is a text (.txt) file that defines all
bonding wire connections. An example of the file content is shown in Figure 8. This file has
two parts:
(a) Definition
This section starts with a tag ‘# Definition’. In this section, different types of wire file
(*.wire) locations are described. In each line, there are two segments:
<segment1> <space> <segment2>
<segment1> is the wire name (used to map in the Table_info section).
<segment2> is the relative location of the wire file (.wire). This file content is described in
Wires in Section 2.2.1.

(b) Table_info
From the initial layout, the user needs to connect each wire between its respective landing
pins. Some of the pin names are mentioned inside the component (*.part) file. For example,
a MOS with keyword D1 will have 3 pins: D1_Drain, D1_Source, and D1_Gate. Also, other
pins are shown in the layout file (Figure 7), such as B1, B2,..., etc. are used as bonding wire
landing pads.

Definition

Wire1 ../../Wire_Lib/bond_wire_info.wire

Table_info

BW1 Wire1 D1_Gate_B4 B2 1 0.1

BW2 Wire1 D2_Gate_B5 B1 1 0.1

BW3 Wire1 D1_Source_B3 B8 1 0.1

BW4 Wire1 D2_Source_B6 B7 1 0.1

Figure 8: Content in a bonding wire connection description file

Similar to the Definition for the components in the layout script, the user can use any
keywords for different types of wires. For each row under the # Table_info tag, the user
can define a bonding wire group (a set of parallel wires), begin with a name for the group,
wire definition, start pin name, end pin name, number of wires, and spacing (in mm) among
multiple wires in the group separated by a space. For the example shown in Figure 8, the first

14

line in the # Table_info section defines a bonding wire with name: ‘BW1’, type: ‘Wire1’,
start pin: ‘D1_Gate_B4’, end pin: ‘B2’, number of wires: ‘1’, and spacing: ‘0.1’. Since B4
and B2 are connected, in the layout script (shown in Figure 7) they have same Y-coordinate
as this wire is a horizontal wire. Also, B4 represents the gate pin of the device D1, so the start
pin name is ‘D1_Gate_B4’.

2.3 Macro Script Content

In a macro script there are two major sections:

1. Input Scripts

2. Layout Generation and Optimization Setup

Description about each section is as follows:

2.3.1 Input Scripts

In this section, eight files/directories locations are provided. Detailed description for each of them
are provided below:

1. Layout_script: In this field, the relative location of the Layout geometry description
script (described in Section 2.2.2) needs to be provided.

2. Bondwire_setup: Here, the relative location of the Bonding wires connection descrip-
tion file (described in Section 2.2.2) needs to be provided.

3. Layer_stack: Relative location of the Layer stack file (described in Section 2.2.1) is pro-
vided here.

4. Parasitic_model: In this version, only PEEC-model is embedded for electrical parasitics
extraction. Some sample files are given for the test cases in ’Sample_Projects’ folder with
the package. Please, note that for different layouts, if you experience very large or negative
values during resistance and inductance extraction, a new model is needed. Please contact the
developers if you are getting weird parasitic values for your case as the interface of creating a
new model file is not provided in this version.

5. Fig_dir: Needs a relative path of a directory to save the figures.

6. Solution_dir: Needs a relative path of a directory to save the solution database file. This
database file contains layout information which is used to plot the figures. In this folder, all
performance values of the solutions and corresponding Pareto-front solution set are reported
as a .csv format. Besides, two folders will be created, where each layout solution components
and corresponding coordinates, dimensions of all solutions and Pareto solutions are dumped
in individual CSV file.

7. Constraint_file: The constraint file is a CSV file, where all constraint values are stored.
Depending on the mode of the flag ‘New’ in the macro file (described in Section 2.3.2), a
constraint file will be created or loaded to generate the layout solutions. In this field, the
user needs to provide the relative location of an empty CSV file (for the first time for each
layout) and make sure the ’New’ flag is set to 1. This flag value allows user to modify the
default constraint values populated by PowerSynth. Once the values are modified, the ’New’
flag needs to be set to 0, which reloads the constraint values in the specified file and does not
require to edit the values again. The file content is described in Section 2.2.1.

15

8. Trace_Ori: This field is the ’Trace Orientation’ description file. A text (.txt) file relative
location with trace orientations needs to be provided. This file is required for the electrical
model to evaluate electrical performance. Two orientations are possible for each trace: Hori-
zontal and Vertical. This represents the preferred current flow direction for the trace.
The format for the file content is as follows:
H: Horizontal trace_1 name.layer_id, Horizontal trace_2 name.layer_id, , etc.
V: Vertical trace_1 name.layer_id, Vertical trace_2 name.layer_id, , etc.
Here, layer_id is the last field in that trace geometry definition line in Layout_script.
For example, the layout shown in Fig. 7, the Trace_Ori.txt file content is:
H: T1.4,T6.4
V: T2.4,T3.4,T4.4,T5.4,T7.4

2.3.2 Layout Generation and Optimization Setup

Layout Generation
In this section, PowerSynth layout solution generation and performance evaluation setup are defined.
PowerSynth v1.9 can serve three purposes:
1. Layout solution generation only.
2. Initial layout performance evaluation.
3. Layout optimization: solution generation and performance evaluation.
Each field for this section is described below:

1. Reliability-awareness: If high-voltage and current dependent constraints (reliability con-
straints) are available and the user wants to apply those, this flag should be set to 2. Setting
up this flag as 0 indicates no reliability constraints are applied. If this flag is set to 1, worst-case
conditions (theoretical, not always practical) are considered. To have reasonable, practical,
and reliability-aware layout generation, this flag needs to be set to 2. If reliability-awareness
is set to 1, or 2, in the constraint table, voltage and current specifications are populated for
modification. Details are described in Section 2.2.1.

2. New: If ‘New’ flag is set to 1, user will be asked to edit the constraint table in the given
constraint file location while running the test case. Once the edition is done, user needs to
enter "1" in the terminal to continue. For each new test case, this flag has to be set to 1 for
the first run. Then, for other iteartions, the flag needs to be set to 0, otherwise the modified
constraint values will be overwritten by the default values. If the flag is set to 0, the constraint
values already saved in the given constraint file are used to generate solutions.

3. Plot_Solution: If this flag is set to 1, all solution layout images will be saved in the Fig_dir.
This is only recommended for small solution spaces (<100 layouts). For large solution spaces,
plotting each figure will cause memory issue in matplotlib. So, this flag should be set to 0.

4. Flexible_Wire: If this flag is set to 0, the bonding wires are rigid (i.e., needs to be strictly
horizontal or vertical). In the Layout_script, any connected pair of bond wire pads need
to be declared carefully to maintain their orientation alignment. For example, if the bond
wire is horizontal, the start and end pins of the wire need to be horizontally aligned (same
y coordinates). Also, in the Bondwire_setup file, the connection is allowed only between
bond wire pads. If the flag is set to 1, flexible bond wires are considered. A flexible bond wire
is one that can be connected between any two points in the layout. There is no restriction

16

on the orientation (i.e., horizontal, or vertical). In this case, the Layout_script and Bond-
wire_setup file need to compatible with the flexible wire implementation. For flexible bond
wires, in the layout script, no bond wire pad is allowed on top of the device. So, in the bond
wire connection table, the wires having source or destination as a device, needs to be only pad
(as declared in part definition). However, the flexible wire would overestimate the bonding
wire length and so this feature is not available for the users. So, default value is set to 0 and
it is recommended not to change the value. If you want to use this feature, please contact
developers.

5. Option: To choose from the three options mentioned earlier: 1. Layout solution generation
only, 2. Initial layout evaluation, 3. Layout optimization/evaluation, this flag is provided.
Based on your choice provide 0, 1, 2 respectively for the options given above. For example: to
run layout optimization, you will provide 2 in the option field. Initial layout does not guarantee
design rule check (DRC) clean solution as it is described by the user. Other options generate
solutions by considering design conatraints and hence they are DRC-clean.

6. Layout_Mode: This field is related to layout generation. In this version, three modes of
layout generation are allowed: 1. Mode-0: minimum-sized solution, 2. Mode-1: variable-sized
solutions, 3. Mode-2: fixed-sized solutions. Details are described in Section 1.3.2. This option
is effective if the user has chosen 0 or 2 as Option field value. For Mode-0, a single solution
is generated. For other modes user can choose number of solutions. Since in Mode-0, user can
generate a single solution, if ‘Option’ is set to 2, that single solution will be evaluated and
this will not generate any Pareto-front as the solution space length is 1. It is recommended
that for each new test case, user generates minimum-sized solution (Mode=0) to make sure
that the initial layout and constraint values are correct. However, based on user requirement,
Layout_Mode value can be 0, 1, or 2. For example: if user chooses fixed size layouts to
be generated, Layout_Mode should be set to 2. There are some other parameters required
depending on the Layout_Mode: Seed, Floor_plan, Num_of_layouts.

7. Seed: Randomization seed. Effective for Option=0, and 2 and Layout_Mode= 1, 2.
Because for the rest of the mode/option there is a single solution.

8. Floor_plan: Size of layout (Width, Height). This input is effective for Option=0, and 2 and
Layout_Mode= 2. Because the Mode-2 generates the fixed floorplan size solutions. Please
make sure that the input floorplan size is larger or equal to the minimum floorplan size.

9. Num_of_layouts: Desired number of solutions. Need to give an integer. Required for
Option=0, and 2 and Layout_Mode= 1, 2.

10. Optimization_Algorithm : Currently, optimization algorithm is only built-in solution gen-
erator called “Non-Guided Randomization”[10]. To provide this algorithm choice, the field
should be populated with “NG-RANDOM” and no other option is available in this version.

Performance Evaluation Setup
In this version, two types of performance evaluation are allowed: Electrical and Thermal. This
allows electro-thermal optimization only. Also, only two objectives are allowed at a time. In this
section, electrical and thermal evaluations are set up. The following information are required for the
electrical and thermal APIs:
a) Electrical Setup
This section should start with keyword “Electrical_Setup:” and end with keyword

17

“End_Electrical_Setup.” In between these two lines following information are required:
1. Measure_Name: Put an arbitrary name for electrical measurement.
2. Measure_Type: Two options: 1. Inductance, 2. Resistance. Based on the user’s choice please
provide 0, 1 respectively.
3. Device_Connection: The device connection setup is required to complete the loop before eval-
uating the loop inductance. So, this part defines connections among the pins of each device. For
example: MOS has 3 pins: Drain, Source, and Gate. So, there are three options for each MOS:
Column1: Drain-to-Source, Column2: Drain-to-Gate, Column3: Gate-to-Source.
Based on your requirement for the desired loop evaluation, provide Device ID and Sequence of 0 or
1 corresponding to each column. For example, in the layout script if you have two MOS declared as
D1 and D2 and you want to short the drain and source of each device, your input will be:
Device_Connection:
D1 1,0,0
D2 1,0,0
End_Device_Connection.
4. Loop Source and Sink: To evaluate a loop inductance or resistance, you need to provide a
source and sink. Sources and sinks may be leads (L1, L2,. . . , etc.) or Device pins (D1_Drain,
D1_Source,. . . , etc.).
For example, to measure loop inductance from Lead 1 to Lead 4, the input will be:
Source: L1
Sink: L4
5. Frequency: You need to provide a switching frequency for parasitic extraction. The unit is in
kHz.
b) Thermal Setup
In this version, only static maximum temperature can be evaluated. This section should start with
keyword Thermal_Setup: and end with keyword End_Thermal_Setup.. In between these
two lines, the following information are required:
1. Model_Select: Two options: 0 for TFSM (characterized by FEM simulation)[11] and 1 for Ana-
lytical (rectangle flux) model. It is recommended to set up 0 for better accuracy.
2. Measure_Name: Put an arbitrary name for thermal measurement.
3. Selected_Devices: Enter the list of device names for which user wants to measure their respective
temperatures.
3. Device_Power: Enter list of power (W) for each device in the Selected_Devices.
4. Heat_Convection: Enter a value for the heat transfer coefficient that nees to be applied to the
baseplate backside(W/m2 −K).
5. Ambient_Temperature: Enter a value of ambient temperature (K).

To summarize the above-mentioned contents, a sample macro script template is shown in Table 3.

18

Table 3: List of fields in a macro script

Input Scripts: # Performance Setup
Layout_script: Electrical_Setup:
Bondwire_setup: Measure_Name:
Layer_stack: Measure_Type:
Parasitic_model: Device_Connection:
Fig_dir: D1 1,0,0
Solution_dir: .
Constraint_file: End_Device_Connection.
Trace_Ori: Source:

Layout Generation Set Up Sink:
Reliability-awareness: Frequency:
New: End_Electrical_Setup.

Plot_Solution: Thermal_Setup:
Flexible_Wire: Measure_Name:
Option: Selected_Devices:
Layout_Mode: Device_Power:
Floor_plan: Heat_Convection:
Num_of_layouts: Ambient_Temperature:
Seed: End_Thermal_Setup.

Optimization_Algorithm:

2.4 Folder Organization

Since there are relative locations associated with the file names in the macro script, the folder
organization needs to be like the Figure 9.

19

Sample_Projects

Test_cases

Test_case_1

Layout_description_script.txt

Bondwire_setup_script.txt

Macro_script.txt

Layer_stack.csv

Constraint_file.csv

Parasitic_model.csv

Trace_ori.txt

Test_case_2

Part_Lib

Wire_Lib

Component_1.part

Connector_1.part

Wire_info.wire

Figure 9: Folder organization for PowerSynth v1.9 sample projects

20

2.5 Walk-Through an Example

A sample 2D half-bridge power module layout (shown in Figure 10 (a)) is chosen for demonstrating
the features of PowerSynth v1.9. To optimize the power loop inductance from DC+-to-DC- and
maximum temperature of the layout, the layout script needs to be generated. Also, to represent the
layout we need to have the following parts:
1. MOSFET, 2. Power Lead, 3. Signal Lead. The steps are described as follows:

1. Prepare all part files and save in Part_Lib folder. So, this folder should have:
1. MOSFET.part 2. Power_Lead.part 3. Signal_Lead.part

2. Create layout script. To represent the layout shown in Figure 10, the initial Layout_script
is shown in Listing 1. Please note that all connected bond wire pads need to be aligned (i.e.,
horizontally or vertically) according to bottom-left coordinate of the pad.

Figure 10: (a) A sample half-bridge power module layout, (b) input layout without bonding wire
pads, (c) script-generated layout

21

Listing 1: Layout_script for the layout shown in Fig. 10

Definition
power_lead ../../ Part_Lib/power_lead.part
signal_lead ../../ Part_Lib/signal_lead.part
MOS ../../ Part_Lib/MOSFET.part

#Layout Information
45 50
+ T1 power 2 2 40 6 4

+ B1 power 10 6 1 1 5
+ B2 power 18 6 1 1 5
+ L1 power_lead 4 3 5

+ T2 power 2 10 30 8 4
- T3 power 32 10 10 32 4
- T4 power 2 42 40 4 4

+ B3 power 16 43 1 1 5
+ B4 power 24 43 1 1 5
+ L2 power_lead 36 26 5
+ D1 MOS 8 11 5

+ B5 signal 10 15 1 1 5
+ B6 power 10 12 1 1 5

+ D2 MOS 17 11 5
+ B7 signal 18 15 1 1 5
+ B8 power 18 12 1 1 5

+ T5 signal 2 20 26 4 4
+ B9 signal 10 21 1 1 5
+ B10 signal 18 21 1 1 5
+ L3 signal_lead 4 21 5

+ T6 signal 2 26 26 4 4
+ B11 signal 16 28 1 1 5
+ B12 signal 24 28 1 1 5
+ L4 signal_lead 4 27 5

+ T10 power 2 32 26 8 4
+ L5 power_lead 4 34 5
+ D3 MOS 14 33 5

+ B13 power 16 37 1 1 5
+ B14 signal 16 34 1 1 5

+ D4 MOS 22 33 5
+ B15 power 24 37 1 1 5
+ B16 signal 24 34 1 1 5

3. Prepare bond wire information file (*.wire) and save in Wire_Lib directory. Sample file is
provided in the ’Sample_Projects-> Wire_Lib.

4. Prepare bond wire connection definition script. The script content for this example case is
shown in Listing 2.

22

Listing 2: Bondwire_setup file content
Definition
Wire1 ..\..\ Wire_Lib\bond_wire_info.wire

Table_info
BW1 Wire1 D1_Gate_B5 B9 1 0.1
BW2 Wire1 D2_Gate_B7 B10 1 0.1
BW3 Wire1 D1_Source_B6 B1 1 0.1
BW4 Wire1 D2_Source_B8 B2 1 0.1
BW5 Wire1 D3_Source_B13 B3 1 0.1
BW6 Wire1 D4_Source_B15 B4 1 0.1
BW7 Wire1 D3_Gate_B14 B11 1 0.1
BW8 Wire1 D4_Gate_B16 B12 1 0.1

5. Prepare layer stack file and save as .csv format. The file content for this design is shown in
Table 4.

Table 4: Layer_stack file content

ID Name Width Length Thickness Material Type Electrical

1 B1 50 60 1 copper p F

2 M1 42 52 0.2 copper p G

3 D1 40 50 0.64 Al_N p D

4 I1 40 50 0.2 copper p S

5 C1 40 50 0.18 None a C

6. Create a blank csv file for constraints. For this case, the file name is "layout.csv".

7. Prepare the trace orientation file. The content for this design is shown in Listing 3

Listing 3: Trace_Ori file content
H:T1.4,T2.4,T4.4,T6.4,T5.4,T10.4
V:T3.4

8. Populate all paths in the fields of the ‘#Input_scripts:’ in the macro script. At this stage
the macro script would look like Listing 4.

23

Listing 4: Macro script with input files content
Input_Scripts:
Layout_script: ./ Half_bridge.txt
Bondwire_setup: ./ Half_bridge_bondwire.txt
Layer_stack: ./ layer_stack_new.csv
Parasitic_model: ./ mutual_impact.rsmdl
Fig_dir: ./ Figs_New
Solution_dir: ./ Solution_New
Constraint_file: ./ layout.csv
Trace_Ori: ./ Trace_Ori.txt

9. Set up parameters for layout optimization according to layout solution evaluation mode. For
example, we want to apply reliability constraints and optimize a fixed-sized layout with size
of (45× 55). The macro script content is shown in Listing 5.

Listing 5: Layout generation setup parameters for fixed-sized optimization
Reliability -awareness: 2
New: 1
Plot_Solution: 1
Flexible_Wire: 0
Option: 2
Layout_Mode: 2
Floor_plan: 45,55
Num_of_layouts: 20
Seed: 10
Optimization_Algorithm: NG-RANDOM

10. Setup performance metrics. For electro-thermal optimization, the electrical, and thermal setup
content are shown in Listing 6, Listing 7, respectively.

Listing 6: Electrical performance evaluation parameters setup
Electrical_Setup:
Measure_Name: Inductance
Measure_Type: 1
Device_Connection:
D1 1,0,0
D2 1,0,0
D3 1,0,0
D4 1,0,0
End_Device_Connection.
Source: L5
Sink: L1
Frequency: 1000
End_Electrical_Setup.

24

Listing 7: Thermal performance evaluation parameters setup
Thermal_Setup:
Model : 0 for TSFM or 1 for Analytical
Model_Select: 0
Measure_Name: Max_Temperature
Selected_Devices: D1,D2,D3 ,D4
Device_Power: 10,10,10,10
Heat_Convection: 100
Ambient_Temperature: 300
End_Thermal_Setup.

11. Run "PowerSynth.exe". In command prompt it will appear as shown in Figure 11.

Figure 11: Running PowerSynth

12. Now provide the path of your "settings.info" file location. This sample file is provided in the
package. You can modify the individual file path according to your environment. The settings
file content is shown in Listing 8.

Listing 8: Settings file content
Settings and Paths
DEFAULT_TECH_LIB_DIR: ./ tech_lib
LAST_ENTRIES_PATH: ./ export_data/app_data/last_entries.p
TEMP_DIR: ./ export_data/temp
CACHED_CHAR_PATH: ./ export_data/cached_thermal
MATERIAL_LIB_PATH: ./ tech_lib/Material/Materials.csv
EXPORT_DATA_PATH: ./ export_data
GMSH_BIN_PATH: ./gmsh -2.7.0 - Windows
ELMER_BIN_PATH: ./ Elmer_8.2-Release/bin
ANSYS_IPY64: C:/ Program Files/AnsysEM /../../../ IronPython
FASTHENRY_FOLDER: ./ FastHenry
MANUAL: ./ PowerSynth_User_Manual.pdf

13. Upon entering the file info it will ask for Macro script" location. After providing that, the
command prompt would be similar as Figure 12.

25

Figure 12: Running PowerSynth (ctd)

Since we have set up New flag as 1, it is asking user to edit constraint table. The initial
table looks like as shown in Figure 13. For this example, the DC+ voltage is 15 KV, and
DC- is 0V. The expected AC voltage is a sinusoid with min and max amplitude is 0 V, 15
KV, respectively and the frequency is 10 KHz. For the gate signal, the voltage is switching
in between -5V and 20V with very high switching frequency (1 MHz). For power traces, and
gate traces, the current loading is assumed to be 15A, and 20 mA, respectively. So, these
information should be provided in the proper waveform format as discussed in Section 2.2.1
(Constraints). After editing the table and providing all constraint information, the table
looks like the one as shown in Fig. 14. Please note that, the voltage difference column has a
constant difference of 5000 V and the current rating column has a constant increment of 5 A.

26

Min Dimensions EMPTY power_trace signal_trace bonding wire pad

Min Width 1 2 2 1

Min Height 1 2 2 1

Min Extension 1 2 2 1

Min Spacing EMPTY power_trace signal_trace bonding wire pad

EMPTY 0.5 0.5 0.5 0.5

power_trace 0.5 0.5 0.5 0.5

signal_trace 0.5 0.5 0.5 0.5

bonding wire pad 0.5 0.5 0.5 2

power_lead 0.5 0.5 0.5 0.5

signal_lead 0.5 0.5 0.5 0.5

MOS 0.5 0.5 0.5 0.5

Min Enclosure EMPTY power_trace signal_trace bonding wire pad

EMPTY 1 1 1 1

power_trace 1 1 1 1

signal_trace 1 1 1 1

bonding wire pad 1 1 1 1

power_lead 1 1 1 1

signal_lead 1 1 1 1

MOS 1 1 1 1

Voltage Specification

Component Name DC magnitude AC magnitude Frequency (Hz) Phase angle (degree)

T1.4 0 0 0 0

T2.4 0 0 0 0

T5.4 0 0 0 0

T6.4 0 0 0 0

T10.4 0 0 0 0

Current Specification

Component Name DC magnitude AC magnitude Frequency (Hz) Phase angle (degree)

T1.4 0 0 0 0

T2.4 0 0 0 0

T5.4 0 0 0 0

T6.4 0 0 0 0

T10.4 0 0 0 0

Voltage Difference Minimum Spacing

0 2

Current Rating Minimum Width

1 2

Figure 13: Constraint table content

27

Min Dimensions EMPTY power_trace signal_trace bonding wire pad

Min Width 1 2 2 1

Min Height 1 2 2 1

Min Extension 1 2 2 1

Min Spacing EMPTY power_trace signal_trace bonding wire pad

EMPTY 0.5 0.5 0.5 0.5

power_trace 0.5 0.5 0.5 0.5

signal_trace 0.5 0.5 0.5 0.5

bonding wire pad 0.5 0.5 0.5 2

power_lead 0.5 0.5 0.5 0.5

signal_lead 0.5 0.5 0.5 0.5

MOS 0.5 0.5 0.5 0.5

Min Enclosure EMPTY power_trace signal_trace bonding wire pad

EMPTY 1 1 1 1

power_trace 1 1 1 1

signal_trace 1 1 1 1

bonding wire pad 1 1 1 1

power_lead 1 1 1 1

signal_lead 1 1 1 1

MOS 1 1 1 1

Voltage Specification

Component Name DC magnitude AC magnitude Frequency (Hz) Phase angle (degree)

T1.4 0 0 0 0

T2.4 7500 7500 10000 0

T5.4 7.5 12.5 1000000 0

T6.4 7507.5 7512.5 10000 0

T10.4 15000 0 0 0

Current Specification

Component Name DC magnitude AC magnitude Frequency (Hz) Phase angle (degree)

T1.4 15 0 0 0

T2.4 15 0 0 0

T5.4 0.02 0 0 0

T6.4 0.02 0 0 0

T10.4 15 0 0 0

Voltage Difference Minimum Spacing

0 2

5000 3

10000 4

15000 5

Current Rating Minimum Width

0 2

5 2.5

10 3

15 3.5

Figure 14: Constraint table content after update

28

Once editing the constraint table, enter 1 in the command line. Then it will generate 20
solutions and several files will be saved in “Solution_dir” and “Fig_dir”. Results can be found
in "Sample_Projects/Test_Cases/Half_Bridge_2" folder in the package.

For large number of solutions, we should turn off “Plot_Solutions” flag, otherwise you may
encounter “memory” issue in python. To use the updated constraint table, user should turn
off the “New” flag, otherwise each time user runs PowerSynth.exe with the same macro script,
it asks for editing constraint table and overwrite the modified values with the default values.
By changing “Option”, “Layout_Mode”, user can use PowerSynth according to the necessity.

3 PowerSynth-Related Publications

This section contains a list of all the current publications related to PowerSynth as of the date of
this document.

1. P. Tucker, "SPICE netlist generation for electrical parasitic modeling of multi-chip power
module designs," 2013.

2. B. W. Shook, A. Nizam, Z. Gong, A. M. Francis and H. A. Mantooth, "Multi-objective lay-
out optimization for multi-chip power modules considering electrical parasitics and thermal
performance," in Control and Modeling for Power Electronics (COMPEL), 2013 IEEE 14th
Workshop on, 2013.

3. B. W. Shook, Z. Gong, Y. Feng, A. M. Francis and H. A. Mantooth, "Multi-chip power module
fast thermal modeling for layout optimization," Computer-Aided Design and Applications, vol.
9, pp. 837-846, 2012.

4. B. W. Shook, "The Design and Implementation of a Multi-Chip Power Module Layout Syn-
thesis Tool," 2014.

5. J. Main, "A Manufacturer Design Kit for Multi-Chip Power Module Layout Synthesis," 2017.

6. Q. Le, T. Evans, S. Mukherjee, Y. Peng, T. Vrotsos and H. A. Mantooth, "Response surface
modeling for parasitic extraction for multi-objective optimization of multi-chip power modules
(MCPMs)," in Wide Bandgap Power Devices and Applications (WiPDA), 2017 IEEE 5th
Workshop on, 2017.

7. Q. Le, S. Mukherjee, T. Vrotsos and H. A. Mantooth, "Fast transient thermal and power
dissipation modeling for multi-chip power modules: A preliminary assessment of different
electro-thermal evaluation methods," in Control and Modeling for Power Electronics (COM-
PEL), 2016 IEEE 17th Workshop on, 2016.

8. Z. Gong, "Thermal and electrical parasitic modeling for multi-chip power module layout syn-
thesis," 2012.

9. S. Mukherjee et al, "Toward Partial Discharge Reduction by Corner Correction in Power
Module Layouts," in Control and Modeling for Power Electronics (COMPEL), pp. 1–8, Jun
2018.

10. I. Al Razi et al, "Constraint-Aware Algorithms for Heterogeneous Power Module Layout
Synthesis and Reliability Optimization," in Wide Bandgap Power Devices and Applications
(WiPDA), pp. 323–330, Oct 2018.

29

11. T. Evans, Q. Le, S. Mukherjee, I. Al Razi, T. Vrotsos, Y. Peng and H. A. Mantooth, "Power-
Synth: A Module Layout Generation Tool," in IEEE Transactions on Power Electronics, vol.
34, no. 6, pp. 5063–5078, Jun 2019, Highlighted Paper.

12. Q. Le et al, "PEEC Method and Hierarchical Approach Towards 3D Multichip Power Module
(MCPM) Layout Optimization", in Proc. IEEE International Workshop on Integrated Power
Packaging, pp. 131–136, Apr 2019.

13. I. Al Razi et al, "Hierarchical Layout Synthesis and Design Automation for 2.5D Heterogeneous
Multi-Chip Power Modules", in Proc. IEEE Energy Conversion Congress and Exposition, pp.
2257-2263, Sep 2019.

14. T. Evans et al, "Development of EDA Techniques for Power Module EMI Modeling and Layout
Optimization", in Proc. IMAPS International Symposium on Microelectronics, pp. 193-198,
Oct 2019.

15. Y. Peng et al, "PowerSynth Progression on Layout Optimization for Reliability and Signal
Integrity", IEICE Nonlinear Theory and Its Applications, vol. 11, no. 2, pp. 124-144, Apr
2020, Invited Paper.

16. I. Al Razi et al, "Physical Design Automation for High-Density 3D Power Module Layout
Synthesis and Optimization", (accepted) in Proc. IEEE Energy Conversion Congress and
Exposition, 2020.

17. T. Evans et al, "Electronic Design Automation Tools and Considerations for Electro-Thermo-
Mechanical Co-Design of High Voltage Power Modules", (accepted) in Proc. IEEE Energy
Conversion Congress and Exposition, 2020.

18. S. Mukherjee et al, "General Equation to Determine Design Rules for Mitigating Partial Dis-
charge and Electrical Breakdown in Power Module Layouts", (accepted) in Proc. IEEE Work-
shop on Wide Bandgap Power Devices and Applications in Asia, 2020.

3.1 Useful Links

• Release Website: https://e3da.csce.uark.edu/release/PowerSynth/

• Publication Website: https://e3da.csce.uark.edu/pub/

30

https://e3da.csce.uark.edu/release/PowerSynth/
https://e3da.csce.uark.edu/pub/

4 Authors

The PowerSynth tool development is on-going for a decade now and the current PowerSynth team
appreciates efforts from quite a few number of graduate students and numerous undergraduate
students over the years.

4.1 Graduate Research Assistants

The PowerSynth research and development team worked on this version (v1.9) consists of four Ph.D.
students from different disciplines, who are supervised by two professors. A brief introduction to
the authors are as follows:

• Imam Al Razi
Ph.D. Student
Computer Science and Computer Engineering Department
University of Arkansas, Fayetteville, AR, USA.

• Quang Le
Ph.D. Student
Electrical Engineering Department
University of Arkansas, Fayetteville, AR, USA.

• Tristan M. Evans
Ph.D. Student
Electrical Engineering Department
University of Arkansas, Fayetteville, AR, USA.

• Shilpi Mukherjee
Ph.D. Student
Microelectronics and Photonics Department
University of Arkansas, Fayetteville, AR, USA.

4.2 Supervisors

• Dr. Homer Alan Mantooth
Distinguished Professor, The Twenty-First Century Research Leadership Chair in Engineering
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA.
Phone: 479-575-4838
Email: mantooth@uark.edu

• Dr. Yarui Peng
Assistant Professor
Computer Science and Computer Engineering Department
University of Arkansas, Fayetteville, AR, USA.
Phone: 479-575-6043
Email: yrpeng@uark.edu

31

	Introduction
	Executive Summary
	PowerSynth Introduction
	About Version 1.9

	Organization
	PowerSynth v1.9 Architecture
	Manufacturer Design Kit (MDK)
	 Hierarchical Constraint-Aware Layout Engine
	Performance Evaluation Models
	Optimization Algorithm
	Post-Optimization and Solution Export

	Using PowerSynth v1.9
	Installing and Running PowerSynth v1.9
	Requirements
	Technology Library Content
	Initial Layout Description

	Macro Script Content
	Input Scripts
	Layout Generation and Optimization Setup

	Folder Organization
	Walk-Through an Example

	PowerSynth-Related Publications
	Useful Links

	Authors
	Graduate Research Assistants
	Supervisors

