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Abstract—Multi-Chip Power Modules (MCPM) are a critical
component in power conversion applications. Power modules
and their layout optimization have been considered a crucial
step to achieving maximum performance. PowerSynth 2 (PS2)
is an electronic design automation (EDA) tool for the gen-
eration and optimization of power module layouts. Currently,
v2.0 uses NSGA-II and Randomization for layout optimization.
However, existing NSGA-II implementation is not aware of the
layout hierarchy, resulting in a less desirable solution space
than Randomization. To address this limitation, this research
presents a hierarchical optimization framework for the layout
synthesis process in PowerSynth 2. Experimental results show
that proposed hierarchical algorithms improve over the exist-
ing optimization algorithms. Moreover, MOPSO is faster than
NSGA-II to converge to Pareto Front with similar solution space
coverage.

Index Terms—Electronic Design Automation (EDA), Layout
Optimization, Hierarchical Optimization, PowerSynth

I. INTRODUCTION

Nowadays, power converter design automation is attracting
the attention of researchers. As power modules are the most
critical components in power converters, an efficient and
effective design methodology is a critical research problem [1].
There is some previous research on automatic power module
design, mostly focusing on three parts: layout generation, mod-
eling, and optimization. However, it is still an open question
to improve computational runtime, modeling accuracy, design
flexibility, and scalability.

A graph model is proposed in [2] to describe heteroge-
neous layouts with all interconnectivity and design constraints.
They implement NSGA-II for tradeoffs in loop inductance
and branch mismatch. A sequence methodology is proposed
in [3], [4], to describe the relative position of switches and
devices. For layout optimization, a 1D binary design string
is considered with the Genetic Algorithm (GA). Another
research [5] developed a Multi-Objective Electro-Thermal de-
sign framework for chip layout optimization of power modules
by NSGA-II. In [6] the module’s geometry and layout are
optimized to reduce its maximum temperature and capacitive
coupling to the baseplate. ANSYS and Multi-objective Genetic
Algorithm are used for analysis and design. Researchers in [7]
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introduced a novel high-order finite element algorithm to
optimize the thermal layout of 3D stacked multichip mod-
ules. For optimal thermal layout distribution, Particle Swarm
Optimization (PSO) is used to solve the slow convergence
and challenging global optimization problems encountered in
traditional algorithms.

The current leading framework for MCPM layout optimiza-
tion is PowerSynth [8]. In [9], the hierarchical corner stitching
data structure with a constraint graph evaluation technique is
used to optimize the MCPM layouts. The PowerSynth 2 [10]
has demonstrated a complete and lab-validated design automa-
tion flow for high-density (2D/2.5D/3D) and heterogeneous
designs. Currently, two optimization algorithms are considered
in v2.0: NSGA-II and Randomization (RAND).

In this paper, our key contributions are: (1) A hierarchical
optimization framework for power module layout optimization
with improved NSGA-II implementation; (2) A new layout op-
timization algorithm based on Multi-Objective Particle Swarm
Optimization (MOPSO); (3) A qualitative comparative study
using various performance indicators on the latest optimization
algorithms.

II. EXISTING OPTIMIZATION ALGORITHMS IN PS2

The PowerSynth v2.0 uses NSGA-II [11] and the Random-
ization Algorithm [12] for layout optimization. For NSGA-II,
the layout engine encodes the layout information into a design
string. The optimization algorithm then performs crossover
and mutation to create a new generation of offspring, which
is evaluated in terms of fitness. The process continues to filter
out better-fitted design strings, which are then decoded by the
layout engine into final design layouts. For RAND, the layout
engine varies the edge weights randomly while evaluating the
hierarchical constraint graphs. This build-in algorithm tightly
couples with the layout generation process and allows for all
generated layouts to be evaluated in parallel.

A. Flat-Level Genetic Algorithm (Old NSGA-II)

NSGA-II is a popular elitist non-dominated sorting genetic
algorithm used in multi-objective optimization. It starts with
an initial population. These solutions are evaluated and ranked
based on objective values. Then, binary tournament selection
is applied to the initial population to select parents. Then
crossover and mutation operators are implemented to generate
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Fig. 1. (a) Parato Front comparison between existing RAND and NSGA-II
on a 3D Design, with (b) two selected layouts.

offspring populations. Crossover for creating offspring swaps
one part or more between two parents. On the other hand,
mutation only changes one or some variables of each parent to
create offspring. The probability for crossover is high, while
low for mutation. After that, they are evaluated for fitness
function values. The Non-dominated sorting is performed on
a combination of both the offspring population and the current
population in each generation to select the best non-dominated
set for the next generation. Eventually, after sufficient gener-
ations of selection, the Pareto Front will be created.

B. Randomization (RAND)

RAND is a built-in algorithm based on the layout generation
procedure. It can generate an arbitrary layout number of
solutions by randomizing edge weights of constraint graphs.
The detailed algorithm is described in [12]. Since the layout
generation is a hierarchical process [9] and the RAND al-
gorithm follows the hierarchy structure of the layout engine,
compared with NSGA-II, which is unaware of the layout
hierarchy, the RAND algorithm performs better in terms of
solution distribution and spreading. However, the NSGA-II can
reach optimized solutions faster since the layout generation is
guided by fitness.

C. Performance Comparisons

Fig. 1 compares these two optimization algorithms for a
sample case design. In this case, RAND obtains a better
Pareto front solution set than NSGA-II with lower parasitic
inductance. However, it is important to note that RAND has
no guidance in the search process, which explains why the
number of Pareto solutions is lower than that of NSGA-
II. Unlike RAND, the current implementation NSGA-II is
unaware of the layout hierarchy, which limits its ability to find
a better solution than RAND. The entire layout is flattened into
a single design string consisting of all variables. The layout
organization information is lost during this process, resulting
in some parts of the design space never being reached. To
address this limitation, a hierarchical optimization framework
is proposed in the following section.
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Fig. 2. Proposed Hierarchical Optimization Flow for PowerSynth 2.

III. HIERARCHICAL OPTIMIZATION ALGORITHMS

A. Hierarchical Genetic Algorithm (New NSGA-II)

To improve old NSGA-II, the design string should contain
not only the design variables in the parent node but also
consider the child nodes. Thus, the design string follows the
hierarchical structure of the layout engine and will consist of
some sub-design strings. Then, based on the new structure of
the design string, the initial population is generated and ac-
cording to each sub-design string normalized. After that, each
population is evaluated. In each generation, each offspring is
normalized and evaluated until the Pareto Front is achieved.

B. Multi-Objective Particle Swarm Optimization (MOPSO)

The latest addition is one of the most promising stochastic
search methodologies because of its easy implementation and
high convergence speed. MOPSO starts with the swarm popu-
lation, which is followed by evaluation and density assessment
of candidate solutions. Then, the positions of particles are
archived as non-dominated solutions in an external repository.
In every iteration, the speed of each particle is calculated based
on its local best-known position, and global-best positions
found by the entire swarm. After that, the new position is
updated based on its current position and velocity [13]. Finally,
the process follows up with an evaluation of the new particle
and an update of the repository content.

The detailed implementation is shown in Algorithm 1. We
set these MOPSO parameters: The inertia weight a equals
0.9, and two random numbers b and c in the range of [0,
1], and Mutation probability 1/numberofDV ) is applied
on 1/3 population. C1 and C2 are the random numbers in
the range of [1, 2]. These variables depend on the design
layout and are divided into two groups, horizontal and vertical,
which are then computed independently. Based on the layout



Algorithm 1: MOPSO Workflow

1 Initialize External Repository (ER)
2 for each particle do
3 Initialize the particle’s position & velocity

randomly
4 Evaluate particle
5 Update the best personal value and archive it in ER
6 while Maximum Iteration is not met do
7 for each particle do
8 Select a leader from the ER
9 V = a ∗ V + b ∗ (Pbest− POP ) + c ∗

(BestER(h)− POP )
10 POP = POP + V
11 Perform Mutation with the Swarm
12 Evaluate particle
13 Update the best personal value and archive it in

ER
14 update leader in ER
15 Return ER as a Pareto Front Solutions

hierarchy structure, each node has a movable room between
its maximum and minimum allowable position. This room
is distributed by the RAND algorithm in the upper level,
while some of these variables are also mapped into the lower
level as needed. Therefore, the dependency of variables across
different levels must be considered [10].

This paper proposes a hierarchical optimization framework
to solve this issue. This hierarchical optimization flow is
summarized in Fig. 2, and its implementation is explained in
Algorithm 2 and Algorithm 3. According to the Hierarchical
Constraint Graphs, the Decision Variables are grouped into a
list of design strings. An example horizontal design string is
constructed as follows:

{[H1, H2, H3, . . . ,Hn][h11, h12, h13, . . . , h1m]

[h21, h22, h23, . . . , h2m]. . . [hn1, hn2, hn3, . . . , hnm]}

subject to
N∑

n=1

Hn = Room and
M≤N∑
m=1

hnm = Hn

(1)

where, Hn and hnm indicate the nth upper level and its
mth lower level decision variables, respectively. Room is the
available room. The vertical ones are processed similarly.

Algorithm 2 depicts a high-level workflow for constructing
horizontal and vertical decision variables in a hierarchical
structure. The process starts with bottom-up constraint propa-
gation for each tree from leaf to root to reserve enough room
for the child node within the parent node. Upon reaching
the root node of each sub-tree, the number of flexible edges
and the ID number of this node are determined. New design
variables are concatenated to form the new design string. This
procedure is repeated on each sub-tree from the root to the
leaf, traversing all flexible edges while demining their IDs.
Eventually, Algorithm 3 is performed based on the generated
decision strings to search for better layouts.

Algorithm 2: Construction of Decision Variables (DV)

1 Inputs: HCG, VCG, Layout hierarchy, User constraints
2 Outputs: HDV, VDV
3 for each tree from leaf to root do
4 Perform bottom-up constraint propagation
5 Evaluate the root node and determine the ID and

numbers of flexible edge weights
6 Append them to the HDV list
7 for each sub-tree from root to leaf do
8 Determine the ID and Numbers of flexible edge

weights
9 Append them to the HDV list

10 Perform Optimization Algorithms

Algorithm 3: Optimization Algorithms Workflow

1 Generate initial population for each sub-decision
variables randomly

2 for each population do
3 Normalized each sub-decision variables
4 Evaluate and find the best solution
5 while Maximum Iteration is not met do
6 Generate new solutions based on the existing ones
7 for new solutions do
8 Normalized each sub-decision variables
9 Evaluate and find the best

10 update the best solution
11 Find out the Pareto Front from the best solutions

In Algorithm 3, the optimization algorithms start with an
initial population that is randomly generated for each sub-
decision variable. The main loop of the algorithm constructs a
new population by evolving the existing population. The next
step normalizes each sub-decision variable for every popula-
tion, which is evaluated in terms of inductance and maximum
temperature. This process repeats until the maximum number
of iterations is satisfied, and consequently, the Pareto Front
solution set is generated.

To illustrate the proposed approach, a 3D configuration
design has been considered, as shown in Fig. 3. The layout
geometry script, consisting of two layers (L1 and L2), is
shown in Fig. 3(a). As an example, we only consider L1.
The illustration of the horizontal corner stitch (HCS) of L1
is shown in Fig. 3(b). Furthermore, The HCS for each group
of L1 (T1, T2, and T3) is shown in Fig. 3(c). The bottom-
up propagation process of the design constraints is shown
in Fig. 4. The detailed algorithms employed for solving
constraints and evaluating locations are based on previous
work [9]. For ID1 in Fig. 4, there are eight flexible edges
to be considered, namely [P1, P2, P3, S4, P5, P6, S5, P7],
which should be appended to the decision variables list. For
the T1 group (ID2), both S2 and E2 have been considered in
ID1 and, thus, E1 and S1 should be appended to the decision
variables list. Similarly, for the T2 group (ID3), S3 and E4
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Fig. 3. 3D Layout Example: (a) Geometry script, (b) Horizontal corner Stitch (HCS) of L1, (c) HCS of each group

should be appended, while all edges for the T3 group (ID4)
have been considered in ID1. Therefore, the Vertical Decision
variables list is constructed as follows:
[[P1, P2, P3, S4, P5, P6, S5, P7], [E1, S1], [E4, S3]].
This same process is applied to Horizontal Decision variables.
The first part of the proposed method has been done (Algo-
rithm 1).

An example of the initial population for the vertical is
represented as follows:
Pop1 = [[0.3543, 0.7758, 0.1531, 0.0759, 0.4987, 0.3244,
0.4044, 0.3440][0.4378, 0.8389][0.2598, 0.02393]].
Consequently, the normalized of each list for pop1 is:
Normalized Pop1 = [[0.12, 0.26, 0.05, 0.03, 0.17, 0.11, 0.14,
0.12][0.34, 0.66][0.92, 0.08]].
For the evaluation, the edge weights should be calculated.
They are calculated by each normalized ID list multiplied by
the available room. After performing Algorithm 2 the available
room is calculated from the difference between the given
floorplan size, and the minimum size. E.g., ID1 has a room
of 10. Thus, the edge weights for ID1 are [1.2, 2.6, 0.5, 0.3,
1.7, 1.1, 1.4, 1.2]. The available room for ID2 and ID3 are
1.2 and 1.7, respectively. After the random room distribution,
the edge weights for ID2 are [0.408, 0.792], while those for
ID3 are [1.564, 0.136].

IV. PERFORMANCE INDICATORS

Several performance indicators are introduced to compare
the efficiency of the multi-objective algorithms [14]. These
indicators are categorized into four groups: convergence, car-

TABLE I
THE COMPARISON BETWEEN INDICATORS

Indicators GD+ IGD+ ϵ HV ER
Convergence + + +
Cardinality + +
Distribution + +

Spread + +
Preference Lower Lower Lower Higher Lower

dinality, distribution, and spread [15]. In this paper, five well-
established indicators are considered. These include Modified
Generational Distance (GD+), Modified Inverted Generational
Distance (IGD+), Epsilon (ϵ), Hypervolume (HV), and Error
Ratio (ER). Table I indicates the comparison between these
indicators. For HV, the greater value is considered better
performance, while for other mentioned indicators, the lower
the better.

• Modified Generational Distance (GD+): The indicator
measures the average distance between each solution of
a given Pareto Front and the closest solution on the
reference Pareto Front.

• Modified Inverted Generational Distance (IGD+): This
indicator is the same as GD+, but it measures the distance
from the reference Pareto Front to a given Pareto Front.

• Epsilon (ϵ): The Epsilon indicator measures the maxi-
mum distance between the reference Pareto Front and a
given Pareto Front.

• Hypervolume (HV): The HV is the most commonly used
indicator. It indicates the size of the space covered by
Pareto Front.
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Fig. 4. Bottom-up constraint propagation illustration for HCS shown in Fig. 3

TABLE II
SUMMARY OF TEST CASE DESIGNS

Design 2D/3D Packaging Paral.
Sw.

Cooling
Side

Final Size
(mm2)

Case 1 2D SiC Wire-bonded 2 Single 40 × 50
Case 2 2D SiC Wire-bonded 2 Single 40 × 50
Case 3 3D SiC Metallic post 3 Double 30 × 15
Case 4 3D SiC Wire-bonded 2 Double 30 × 30

• Error Ratio (ER): The ER indicator considers the
number of non-dominated solutions of the given Pareto
Front, which belongs to the reference Pareto Front.

V. DESIGN CASES AND EXPERIMENTAL RESULTS

A. Case Studies

To demonstrate their performance, the proposed methods
are applied to several test cases. The results are compared
with the current optimization algorithms. In addition, the
proposed hierarchy-aware NSGA-II and RAND are compared
with MOPSO. The optimization target is to minimize the
power loop inductance and maximum temperature by varying
the layout floorplan and component placement. It is worth
mentioning that the reference Pareto Front is obtained by
combining the results from all algorithms.

In this study, we consider 2D and 3D configuration case
studies [16]. The summary of case studies is mentioned in
Table II. The specifications are summarized in Table II. Case 1
and Case 2 are 2D Half-bridge SiC modules with two switches
in parallel. On the other hand, Case 3 and Case 4 are 3D
Half-bridge SiC modules that consist of four and two layers,
respectively. In Case 3, metallic post-type vias are used for
vertical connection, while in Case 4, bonding wires are used.
For 2D designs, each algorithm generates 400 layouts. For 3D
design, RAND generates 400 layouts, while others generate
200 each. For HV calculation, reference points are considered
(18, 400), (26, 402), (2.7, 360), and (5.5, 321) for each case,
respectively.

B. Analysis Results and Discussion

The analysis results for case studies are shown in Table III.
The hierarchical method performs better than the current
optimization structure in all indicators. For Case 1 and Case

TABLE III
COMPARISON OF DIFFERENT ALGORITHMS

Case
Studies Indicators Current Method Proposed Method

RAND NSGAII MOPSO NSGAII

Case 1

DG+ 1.172 2.149 0.049 0.360
IGD+ 1.165 0.948 0.042 0.056
ϵ 1.719 1.160 0.118 0.278

HV 41.72 44.41 59.37 57.38
ER 1.000 1.000 0.407 0.593

Case 2

DG+ 0.310 1.295 0.044 0.197
IGD+ 0.977 2.007 0.032 0.173
ϵ 3.731 5.214 0.419 0.516

HV 42.71 25.83 47.95 45.61
ER 0.977 1.000 0.295 0.727

Case 3

DG+ 0.129 0.104 0.023 0.049
IGD+ 0.205 0.111 0.032 0.043
ϵ 0.771 0.380 0.156 0.221

HV 5.252 5.743 6.267 6.206
ER 0.893 0.893 0.571 0.714

Case 4

DG+ 0.354 0.078 0.000 0.303
IGD+ 0.598 0.080 0.004 0.284
ϵ 1.163 0.137 0.024 0.626

HV 3.411 6.161 6.617 4.886
ER 0.607 0.893 0.571 1.000

2, in both the GD+ and IGD+ convergence indicators, MOPSO
performs better compared to NSGA-II. MOPSO and NSGA-II
obtain similar HV in both cases, while for Case 2, MOPSO ob-
tains better Epsilon. In Case 3, MOPSO bests in all indicators,
though HV is almost the same for both algorithms. In Case
4, MOPSO clearly outperforms NSGA-II in all indicators.
Overall, with hierarchy considerations, MOPSO is better than
NSGA-II, particularly in terms of GD+ and IGD+, proving that
MOPSO is faster to converge to the Pareto solutions.

Fig. 5 shows the comparison among different algorithms for
Case 1. The proposed method performs better than the current
method in almost all aspects. In addition, MOPSO obtained a
better Pareto Front solution than NSGA-II. The values of HV
and Epsilon over the number of layout generations are shown
in Fig. 5(b), and Fig. 5(c), respectively. We find that MOSPO
generates optimal results faster than NSGA-II for this case.

To demonstrate the efficiency of the proposed methodology
seven distinct floorplan sizes are considered, ranging from
1225 mm to 2225 mm. For each floorplan size, 400 solutions
are generated using RAND and MOPSO. The results are
shown in Fig. 6, which indicates that MOPSO performs better
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than RAND in all floorplan sizes. The spread and distribution
of the solution space generated by MOPSO are wider than that
of RAND. From the MOPSO Pareto Front, three solutions are

selected and labeled in Fig. 6(b). The corresponding layouts
of these solutions are shown in Fig. 6(c). Layout A has
the highest inductance value but the lowest temperature as
it has the largest floorplan size. Conversely, Layout C has
worse thermal results but better electrical performance, which
is reasonable as it has the smallest floorplan size. Layout
B represents a balanced tradeoff between the two extreme
choices.

Similarly, Fig. 7(b) compares different algorithms for Case
2 with three different optimized layouts shown in Fig. 8.
From Fig. 7(b), the proposed method performs better than the
current method. In addition, MOPSO obtains a comparable
Pareto Front solution to NSGA-II. Fig. 7(a) shows the solution
space of MOPSO over iterations. The solution space from
iteration 1 (initial population) expands with more iterations,
and newly created designs concentrate toward the Pareto Front.
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Fig. 9. Comparison of different algorithms in Case 3: (a) Pareto Front, (b) Hypervolume, (c) Epsilon
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TABLE IV
RUNTIME COMPARISON(UNIT IN MIN).

Case study RAND NSGAII (Old) NSGAII (New) MOPSO
Case 1 15.5 16.0 16.0 16.0
Case 2 15.4 14.8 15.0 15.0
Case 3 20.0 100 103 103
Case 4 9.0 63.0 64.0 65.0

In addition, observing from the solution space movement over
the number of iterations, the proposed algorithms demonstrate
a higher convergence speed, as shown in Table III. In addition,
Fig. 7(c) gathers the global best solutions obtained from all
algorithms. Almost all Pareto Front solutions belong to our
proposed method, MOPSO, with hierarchical design strings.

Fig. 9 displays a comparative analysis of different algo-
rithms for Case 3, a 3D module with four layers. From
Fig. 9(a), we can deduce that the proposed methodology out-
performs the current method. Furthermore, MOPSO obtained
a comparable Pareto Front solution to NSGA-II. Figs. 9(b)
and 9(c) illustrate the trend of HV and Epsilon across the
layout generations. From the NSGA-II solution space, three
solutions are selected and labeled in Figure 9(b). The cor-
responding layouts of these solutions are shown in Fig. 10.
Layout A has the lowest inductance value compared to the
two other layouts with the highest temperature. On the other
hand, Layout C has better thermal performance but worse
electrical results. Among them, layout B is considered a
balanced Electro-thermal solution.

C. Runtime Comparison

Runtime is measured on a server with dual Intel Xeon
Silver 4210 processors. The runtime comparison result for all
case studies is shown in Table IV. For the 2D case studies,
each algorithm generates 400 layout generations. In Case 1,
both NSGA-II and MOPSO algorithms take 16 minutes, while
RAND takes 15.5 minutes. For the 3D cases, RAND generates
400 layouts, while both NSGA-II and MOPSO generate 200
each. In Case 3, RAND takes 20 minutes with the support of
parallel computing, while the old NSGA-II takes 100 minutes.
With the proposed methodology, the runtime for NSGA-II
and MOPSO is almost the same, around 103 minutes. Similar
results are found in Cases 2 and 4. Based on these, the runtime
of the proposed algorithms is comparable to the old NSGA-II,
while RAND takes the lead with 5-7 times faster runtime. This
is because RAND creates all solutions first, and then evaluates
all solutions independently with parallelization. Note that it is
possible to accelerate NSGA-II and MOPSO by evaluating
all designs in each iteration with parallel computing. This
programming improvement will be implemented in a future
version.

VI. CONCLUSIONS AND FUTURE WORK

In this work, PowerSynth 2 optimization algorithms have
been updated from planar to hierarchical. In addition, a new
MOPSO is proposed as a faster alternative to existing NSGA-
II and RAND. For performance comparisons, five different
indicators and runtime are considered to evaluate different
aspects of the optimization algorithms. All algorithms are
tested on four different design cases. The results verify that the
hierarchical optimizations significantly improve result quality
and solution space size. Moreover, MOPSO is comparable to
NSGA-II in terms of distribution and spread but achieves a
faster convergence speed. These proposed hierarchical algo-
rithms will be open-sourced and released as PowerSynth v2.1
for public testing. Parallel computing will be enabled in a
future version to accelerate the runtime of these algorithms
further.
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