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Abstract— Along with the developments in power electronic 

packaging technology, many studies on design automation for 

MCPMs layout further push the design limits for their power 

density and compactness. Among these studies, PowerSynth has 

shown the complete design flow for MCPMs, which offers a multi-

objective layout optimization algorithm and reduced-order 

models for electrical parasitic extraction and thermal evaluation. 

While these models are accurate, there is no connection between 

the electrical parasitic and device temperature during the layout 

optimization process. Hence, the multi-objective optimization 

algorithm optimizes these objectives separately without insights 

into their impacts on the reliability and performance of the wide 

bandgap (WBG) device. This limitation can lead to a layout 

solution with undesirable performance compared to the WBG 

device's safe operation area (SOA). Therefore, this work 

incorporates the WBG physics-based device knowledge into the 

power loss calculation for a more accurate electro-thermal 

prediction in PowerSynth. A better decision can then be made on 

the most suitable thermal management system.  

Keywords—Electrothermal Design, MCPM, PowerSynth, 

Machine Learning, Neural Network 

I. INTRODUCTION  

The traditional design process for Multichip Power Module 
(MCPM) layout is very manual, tedious, and time-consuming, 
involving many different analyses and simulation tools. Hence, 
MCPM layout optimization and design automation have become 
trending research topics in the power electronics community in 
the past few years. These studies have developed design 
automation methods to accelerate further and push the limits for 
a more compact, reliable, and efficient MCPM design. Among 
these studies, PowerSynth [1]–[3] has the most developed 
design flow, which has been validated many times through 
experiments and measurements. In the last few versions, the 
combination of constraint-aware layout generation algorithm, 
reduced-order modeling toolbox, and optimization algorithm 
allows the tool to search for an ample layout solution space with 
optimized layouts in both electrical and thermal aspects [2], [4], 
[5]. However, the tool lacks insights into the Wide Bandgap 
(WBG) devices' physics [6], which plays a crucial goal in the 
overall performance and reliability of the MCPM design. 

As has been shown in many studies [7][8], although WBG 
devices such as SiC can handle much higher junction 
temperatures than their Si counterpart, the thermal run-away 
problem is still an issue if the thermal dissipation system is 
designed poorly. As shown in Fig. 1, the power loss (dashed 
line) of a SiC device is temperature dependent. A steady state 
can be reached with a good cooling system when the device's 
power loss equals the cooling capability. Normally, this steady 
state is defined by the user by fixing the upper limit for device 
junction temperature from which a good thermal management 
system is designed to meet the heat dissipation requirements. In 
the worst scenario, the device will eventually run into thermal 
run-away issues due to the exponential increase of WBG device 
power loss versus temperature. Before this event, the solder 
attach and the aluminum metallization melts and the circuit fails. 
In either case, improper cooling system quickly leads to the 
failure of the whole system. Furthermore, according to [9], this 
power loss value also depends on the electrical parameters such 
as parasitic inductance, device’s internal parasitic, gate 
resistance, etc. Therefore, an accurate estimation on device 
power loss and its correlation with electrical-thermal parameters 
during optimization is crucial for the performance and reliability 
of the MCPM design.  

In the MCPM design, especially design automation tool such 
as PowerSynth. Trade-offs between the electrical parasitic and 
thermal performance are analyzed through built-in model [4] 
and Application Programing Interface (API) [5]. The results 
from these models can serve as inputs for the power loss  
calculation to ensure the thermal reliability MPCM design 
during the dynamic performance. In this work, to further 
improve the computational efficiency of and robustness during 
the layout optimization, a Feed Forward Neural Network 
(FFNN) regression model has been trained to capture the 
relationship among parasitic inductances and device 
temperature. The FFNN model is reused during layout 
optimization to accurately mitigate the thermal-runaway issue 
during the dynamic operation of the devices. This model ensures 
a fast evaluation of the power loss during the layout optimization 
while maintaining less than 5% error. 

II. METHODOLOGY 

There are currently many theoretical models in the literature 

for accurate prediction of the power loss of the device during 

the dynamic operation. In this paper, the model in [9] has been 

reimplemented and combined with the physics-based device 
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model [6][10]. Both models are reimplemented in the Python 

language to have a better interface with the PowerSynth MCPM 

design tool. To ensure the functionality and accuracy of the 

models, the models are validated versus previously provided 

measurement data and information from the datasheet. 

 

A. Implementation of SiC device model 

The device structure and corresponding equivalent circuit 

representation is presented in Fig. 2. To explain the device 

characteristics in terms of the physical attributes, the total drain-

source voltage may be divided into 3 parts. The voltage 

emanating from the parasitic source/substrate and contact 

resistance, Rs. Next, the voltage resulting from the Ohmic drift 

resistance in the n- epitaxial layer. Finally, the voltage dropped 

across the inversion channel is Vdnrsnr and is a function of gate-

source voltage and is the core of device operation. The channel 

resistance is non-linear which is a function of both drain-source, 

Vdnrsnr and gate-source voltage, Vgsnr. Depending on the drain 

and gate bias, the drain-source current can be divided into 2 

regions namely linear and saturation region. The linear region 

(Vgs >Vth and 0< Vds < Vdssat) current is expressed by equation 

(1): 

 𝐼𝑚𝑜𝑠𝑥
= 𝒌𝒇𝒙 ⋅ 𝒌𝒑𝒙 ⋅ (𝑣𝑔𝑠𝑖 − 𝒗𝒕𝒙)𝑣𝑑𝑖𝑠𝑖 − 𝒑𝒗𝒇𝒚𝒙−1
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    In the above equations, x denotes the low and high region 

(x=low, high) which arises from the gradual de-trapping of the 

trap states near the conduction band. theta accounts for the 

vertical filed dependent mobility reduction while the pinch-off 

parameter pvf represents the gradual transition between linear 

and saturation region, a characteristic of SiC power MSOFETs. 

kf and kp control the transconductance of the saturation and 

linear region respectively. It should be noted that the identical 

equation is used for low and high current components in order 

for decoupling the parameter influence on each other. The 

distinguished threshold parameters, vt are to represent the 

different effective MOS capacitance.  

    The saturation region current (Vds > Vdssat) is expressed by 

equation (3): 

 

𝐼𝑚𝑜𝑠𝑠𝑎𝑡 𝑥
=

1
2

𝑘𝑝𝑥(𝑣𝑔𝑠𝑖 − 𝒗𝒕𝒙)
2

1 + 𝒕𝒉𝒆𝒕𝒂𝒙(𝑣𝑔𝑠𝑖 − 𝒗𝒕𝒙)
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Fig. 2 SiC Power MOSFET devices structure with 
corresponding parasitic elements 

Fig. 1 Thermal Reliability Check Procedure 



The model includes temperature scalable equations for the 

temperature dependent parameters such as transconductance, 

threshold voltage, pinch-off voltage parameter, vertical field 

mobility reduction parameter etc. based on [11].  

Apart from the static characteristics, the dynamic behavior 

has been captured with the intrinsic inter-electrode capacitance 

formulations. Three major dynamic components of the power 

MOSFETs are gate-drain, gate-source, and drain-source 

capacitances. They are related to the conventional datasheet 

provided characteristics in the following manner: 

 𝐶𝑖𝑠𝑠 = 𝐶𝑔𝑠 + 𝐶𝑔𝑑  (4) 

 𝐶𝑜𝑠𝑠 = 𝐶𝑔𝑑 + 𝐶𝑑𝑠  (5) 

 𝐶𝑟𝑠𝑠 = 𝐶𝑔𝑑  (6) 

For this case, the C-V characteristic is considered as an 
average value in the voltage range between 0-600 V as the input 
for the power loss model in [9]. Once the parameters of the 
model are fitted against the datasheet, the channel current 𝐼𝑚𝑜𝑠 
and the drift resistance equations are combined in the differential 
iterative solver using Python SciPy package. Then, the solver is 
setup to solve the Kirchhoff Voltage Law (KVL) problem in 
equation (7) to find the correct voltage drop over the drift-
resistance: 

 Solve (𝑣𝑑𝑛𝑟𝑠𝑛𝑟) where: 

𝑉𝑑𝑠 = (𝑟𝑑𝑟𝑖𝑓𝑡 + 𝑟𝑠) × 𝐼𝑚𝑜𝑠 + 𝑣𝑑𝑛𝑟𝑠𝑛𝑟 

(7) 

 

here, 𝑟𝑑𝑟𝑖𝑓𝑡  is a function of 𝑣𝑑𝑛𝑟𝑠𝑛𝑟  and 𝑣𝑔𝑠, 𝐼𝑚𝑜𝑠 is the function 

of 𝑣𝑔𝑠  

Using this setup, the device characteristics can be directly 
calculated through the physics-based equation without the help 
from circuit simulation. With the implementation of the device 
model in Python, for each different temperature, the 
temperature-dependent characteristics such as threshold voltage 
Vth or transconductance gfs can be quickly and accurately 
calculated. These values serve as inputs for the analytical 
switching loss model for different switching loss calculation 
versus temperature.  

B. Thermal Netlist Extraction 

In this paper, the layout for a half-bridge MCPM (Fig. 3) 

will be used for the PowerSynth layout optimization study. For 

each of the layout solutions from the solution space, 

ParaPower-PowerSynth API [5] has been used to extract the 

thermal resistance result from each device. This API can 

compute the steady state temperatures of different MCPM 

layout elements such as device, trace, substate material, and so 

on. A 1W heat loss is applied sequentially to top surface of the 

devices in the setup to find the thermal resistance of the devices 

in the layout. A heat convection coefficient is also applied to 

the backside of the baseplate in the ParaPower simulation. The 

thermal resistance of each device considering the coupling 

resistance from the device on the opposite switching position 

can be extracted by calculating the temperature difference 

between the device top surface and the ambient temperature 

(𝑇𝑎𝑚𝑏)  using the equation below.  

 
𝑅𝑇𝐻 =

𝑇𝑑𝑒𝑣𝑖𝑐𝑒 − 𝑇𝑎𝑚𝑏

𝑃𝑙𝑜𝑠𝑠 = 1𝑊
  

 

(8) 

    Using equation (8), a 2×2 thermal resistance matrix can be 

extracted from the layout. Here, R11 and R22 are the self-thermal 

resistance of each device. R12 is the coupling resistance 

calculated using the equation (8) while the power is applied to 

one device and measured at the other. This results in the thermal 

network in Fig. 4. 

C.  The Succesive Approximation Method 

Since the power loss of a MOSFET is a temperature-

dependent value. It is almost impossible to accurately evaluate 

the steady state value of the circuit without circuit simulation. 

Several works have demonstrated an iterative method to solve 

this problem namely the successive approximation method. 

This successive approximation method (Fig. 5) iteratively 

updates the temperature and power loss value where the 

device’s temperature difference of the consecutive iterations is 

calculated. When the temperature difference is smaller than a 

tolerance value (e.g 0.5 °C) the iterative process is reached, and 

Fig. 4 Thermal network extraction procedure for an 

MCPM with 2 devices 

Fig. 3 The MCPM layout for this study 



the final steady state temperature is reported. In this work, the 

steady state junction temperautre is set below 220 C for each 

device. This is because at this temperature, even when the 

thermal runaway event does not occur, the solder attach of the 

device has been melted. This method has been used in [12] and 

[13]. In [12], a very simple model for power loss evaluation has 

been used to optimize the runtime. However, this model does 

not take into account the parasitic parameters. Because of this, 

the energy loss in [12] is a fixed value for every parasitic and 

temperature combination. The work in [13] first performed the 

Finite Element Analysis (FEA) to extract the thermal network. 

From here, iterative circuit simulations have been done to find  

the final steady state temperature of the circuit. The only 

drawback of this method are the time-consuming circuit 

simulations. 

D. Feed Forward Neural Network (FFNN) Regression for 

Swtiching Loss Modeling. 

While the model in [9] is quite fast, performing a thermal 

sweep for each different layout parasitic configuration while 

calculating power loss is quite computationally expensive. 

Furthermore, since the Python implementation of the analytical 

power loss requires a differential equation solver to solve for 

turn-on and turn-off periods it is sometimes a bit slow to reach 

the convergence. Moreover, Python requires overhead 

interpretation of the code which also slows down the analytical 

computation. Thus, directly placing the analytical power loss 

calculation into the layout optimization loop is not preferred. 

Here, a feed-forward Artificial Neural Network (ANN) 

regression model using the Scikit-learn machine learning 

package can be used instead. This model is guaranteed to be 

faster thanks to its optimized implementation from the Scikit-

learn library.  The Python SALib library is first used to generate 

a set of 800 input parasitic parameter combinations for the 

power loss calculation. This set of parameters includes parasitic 

inductance values of the gate, drain, and source for each device 

(Lg, Ld, and Ls). The parameters are randomized in the range 

of 1-10nH, 1-20nH, and 1-20nH for Lg, Ld, and Ls, 

respectively. For each variation of Lg, Ld, and Ls a temperature 

sweep with 50 data points is performed between 25°C and 

200 ° C to evaluate the switching losses versus temperature 

dependent. 

In this calculation, the load current is set to 50 A, and the 

DC-DC voltage is set to 600V. In the future, the current can be 

considered as an input for the model. However, the relationship 

between current and switching loss is quite linear. Also, the 

circuit parameters are usually defined prior to the layout 

optimization. Hence, the circuit parameters such as voltage and 

current are set to be constants now. There are 4000 data points 

to train the neural network, and 400 data points are randomly 

taken to test the accuracy of the trained model. The results show 

less than 5% of error between the simulated and FFNN 

implementation. It is worth sharing that, during the training 

process of the model, 40 Intel(R) Xeon(R) Silver 4210 CPU @ 

2.20GHz are run parallelly on a Linux server. The number of 

epochs for the FFNN is set to 500 to train the most accurate 

FFNN model. The total time for data collection, model training, 

and model validation using the multiprocessing evaluation is 

160 seconds. It would take 6400 seconds or about 1.8 hours on 

a single CPU computer. The total time for 4400 evaluations 

using the FFNN model is 17ms, with less than 5% error. Hence 

this model is very suitable for the optimization process. 

III. MODELING VALIDATION 

A. Python Physics-based Device. 

While the accuracy, correctness and functionality of the 

device model in [6][10] have been proven many times. In this 

work, for the first time, this model is implemented in Python. 

Fig. 5 shows the comparison for the device fitting results versus 

measurement of a C2M0025120D MOSFET from CREE at 

room temperature. In this study, the same device model has 

been fitted versus the datasheet for the bare die CPM2-1200-

0040B MOSFET from CREE. The model is fitted at various 

temperatures from the datasheet. Hence, the thermal 

dependency can be captured in the equations and parameters of 

the device. 

B. FFNN versus Power Loss Model. 

    To verify the accuracy of the FFNN model, three different 

combinations of  Lg, Ld, and Ls have been randomly selected 

as input. The total switching loss for each selected parasitic 

combination is then swept between 25°C to 200°C. The same 

swept has been done for the analytical loss model. For this 

Fig. 5 The Successive Approximation Method 



comparison, the switching frequency is set to 10kHz and the 

power loss for both the analytical and FFNN models are 

compared in Fig. 7. The results have shown very good fit 

between the FFNN model and the analytical model. However, 

the FFNN model is much faster and more preferred for the 

optimization process. The thermal dependent conduction loss 

can also be obtained from the SiC MOSFET model due to the 

change of RdsOn versus temperature. Hence, the total power loss 

for each temperature can be calculated by: 

 

 

 𝑃𝑡𝑜𝑡(𝑇) = 𝑃𝑐𝑜𝑛𝑑(𝑇) + 𝐸𝑠𝑤(𝑇) ∗ 𝑓
𝑠𝑤

  

 

(9) 

IV. OPTIMIZATION STUDY AND RESULTS 

    For this study, a layout optimization for a half-bridge layout 

with the footprint size of (40x50 mm2) and one device per 

switching position as shown in Fig. 3 has been performed using 

PowerSynth. In the first optimization study, a power loss of 

65W has been applied to each device where the convection 

coefficient value is set to be 500 (W/m2 .K). This 65W value 

has been chosen since it is closed to the conduction loss value 

at 25°C of the MOSFET. The maximum temperature and DC-

DC loop inductance are used for the optimization target. Fig. 8 

illustrates the solution space for 500 solutions, in this case, the 

loop inductance results are ranging from 10nH to 30 nH for this 

layout. The temperature results vary from 146 °C to 152 °C. 

Since the tool has no information about the power loss and 

temperature dependency, all of these layout solutions are 

marked as valid (green).  

   Once these layouts are obtained, both thermal and electrical 

netlists are extracted for each device. These netlists serve as 

input for the FFNN power loss model to quickly find the power 

loss and temperature-dependent curve. The successive 

approximation method is applied to each layout solution where 

the new maximum temperature results are updated. If the 

process in Fig. 5 does not converge, or the temperature of a 

device is higher than the maximum temperature set at 220 °C, 

the process stops. The layout is then flagged as an invalid 

layout. Because the FFNN-based power loss model is fast and 

accurate, the average time it takes to run the successive 

approximation for 500 layouts is about 5 ms on a single core of 

Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz. Therefore, 

performing a frequency sweep and seeing its impacts on the 

layout solutions is possible. Fig 9 shows the updated Pareto-

frontier for various switching frequencies from 10kHz to 

20kHz. As seen from these results, as opposed to the steady 

state solutions in Fig. 8, the layout solutions with higher loop-

inductance tend to have a higher maximum temperature. This is 

simply because switching losses increases with higher parasitic 

values. It is worth noting that many solutions have been 

invalidated during the process described in Fig. 5. Table 1 

below shows the number of invalid solutions for each frequency 

value.  

    The total number of iterations has been collected during the 

iterative evaluation of the successive approximation method. 

The total number of iterations for this experiment is 18489. 

Even though the analytical model is fast, this would take up to 

7.5 hours to complete. This is mainly due to the overhead 

interpretation time of the Python language used to implement 

this model. Conversely, the total time taken for the FFNN 

model inside the successive approximation method is only 

12.5s on the same machine, thanks to the optimized 

implementation of the method from the Scikit-learn library. 

     

Fig. 6 Python implementation vs Measurement (a) Id-
Vg (b) Id-Vd 
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Table 1 Number of Invalid Solutions for Each Switching Speed 

Frequency (kHz) # Invalid Solutions / 500 

10 72 

12 186 

14 287 

16 388 

18 460 

20 492 

 

V. CONCLUSION AND FUTURE WORK 

    This paper has developed a new approach to performing 

electrothermal co-simulation. This method allows the designer 

to verify the functionality of the circuit, where a true 

performance trade-off between electrical and thermal domains 

can be achieved. In future work, an FFNN model can be built 

based on circuit simulation data to capture the unbalance 

switching losses among parallel devices. This FFNN model 

shows benefit thanks to it optimized implementation from the 

Python Scikit learn library. 
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Fig. 9 Frequency sweep impact on the solution space 
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