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Abstract— PowerSynth is a tool for the generation and multi-

objective optimization of power module layouts. However, this 

generation is limited to variations of the initial layout sketched by 

a designer. In an effort to provide a deeper and more thorough 

exploration of the resulting design space, this paper proposes a 

placement and routing methodology adapted from VLSI 

techniques to provide a more diverse set of starting point layouts 

for PowerSynth optimization through synthesis of a circuit netlist. 

An overview of this method is presented along with prototype 

results of a continuous, force-directed placement routine. This 

paper demonstrates the proposed design flow, including 

PowerSynth initial layout results. 

Keywords—power module, layout optimization, electronic design 

automation 

I. INTRODUCTION 

The design automation of power electronics modules is 
gaining steady traction in recent years with several tools and 
techniques being introduced to help aid the designer in exploring 
design space tradeoffs [1-4]. Among these tools, PowerSynth [5-
7], uses a unique constraint-aware layout engine to rapidly 
generate feasible, manufacturable iterations of a power module 
design while optimizing for electrical parasitics, thermal 
performance, and mechanical reliability. The results of which 
are presented to the user on a Pareto frontier of tradeoffs in the 
design spaces chosen. However, while PowerSynth excels at 
quickly producing and evaluating layouts, these generated 
layouts are inherently variations of a single, starting point 
artwork as shown in Fig. 1 and Table I and adapted from [7].  

In order to further expand the design space considered by 
PowerSynth, it is necessary to create a more diverse set of initial 
layouts for a given design. Additionally, the introduction of 
another layer of abstraction on top of the PowerSynth layout 
engine would allow greater flexibility of use for power systems 
designers in exploring system-level tradeoffs. For these reasons, 
this work proposes a modified place-and-route routine that 
synthesizes power module layouts from a circuit netlist and 
produces a plurality of starting point layouts immediately ready 
for further evaluation using PowerSynth. 

In approaching issues related to power module layout 
synthesis, a good candidate field to draw inspiration from is that 
of VLSI (very large-scale integration) design automation. In this  

 

Fig. 1. The initial layout for PowerSynth and resulting optimized 

layouts 

design flow, synthesis results in a gate-level netlist that is then 
combined with additional design files to specify the physical 
design. In general, layout partitioning breaks up the design into 
several smaller subsystems to be addressed individually. 
Floorplanning handles the arrangement of these subsystems 
within the layout while placement and routing steps are 
introduced to connect all of the subsystems and optimize for 
metrics like wirelength and timing. 
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TABLE I. LAYOUT PERFORMANCE METRICS 

 
Dimensions 

(mm) 
Inductance 

(nH) 
RTH  

(Wm-1K-1) 
Stress 
(MPa) 

Layout 1 50x30 9.93 0.204 556 

Layout 2 84x34 7.23 0.206 704 

Layout 3 106x61 9.26 0.203 816 

 

When it comes to power electronics, a similar vein of 
thinking can be applied where converters and systems are 
comprised of power electronics building blocks that can be 
optimized individually before integration. These building blocks 
can also take the form of power modules that are comprised of 
varying arrangements of switching cells to achieve different 
topologies and current ratings. So, to further the design 
automation of power electronic modules and systems, the 
methods and algorithms from the mature field of VLSI design 
make great candidates for adaptation. A comparison of some 
aspects of VLSI and power module physical design has been 
adapted from [3] and presented in Table II. One fortunate 
conclusion that can be drawn from this is that since the number 
of devices and types of topologies employed in power modules 
is so much less, this can help to constrain aspects related to 
placement and routing in the early stages of this work. 

TABLE II.  VLSI VS. POWERMODULE LAYOUT ASPECTS 

 VLSI Layout Power Module Layout 

Component 
Count 

High 
(up to billions) 

Low 
(generally <20 [3]) 

Component 
Dimensions 

Regular Irregular 

Routing 
Layers 

Multiple 

Single 
(generally, with multi-
layer and 3D primarily 

in academic works) 

Primary 
Measurements 

Footprint, 
timing delay 

Footprint,  
electrical parasitics, 

junction temperature, 
mechanical stress 

 

II. PLACE-AND-ROUTE ROUTINE 

A. Overview 

The main purpose of this work is to develop methods and 
algorithms necessary to automate the steps in synthesizing a 
power module design from a circuit netlist to an initial layout for 
the EDA tool PowerSynth. This is accomplished by adapting 
VLSI techniques such as force-directed placement along with a 
simple grid-based routing algorithm.  

The main steps associated with these methods involve the 
placement of terminals and devices relative to them before 
routing the power and signal traces then determining bondwire 
locations. An illustration of the place-and-route routine is shown 
in Fig. 2. A user-supplied annotated circuit netlist is used to 
initialize the process by not only establishing the connectivity of 
components relative to terminals, but also specifying the module 
footprint and desired terminal locations. The netlist follows the 

same general format of an LTSpice-compatible netlist but with 
a few exceptions. Chiefly, the comment token is used to flag 
keywords used by this routine that include module footprint 
dimensions, units, and terminal names and locations.  An 
example of this annotated netlist is shown in Fig. 3. The reasons 
behind providing module footprint and terminal locations in this 
netlist are two-fold. First, using the terminals as fixed points 

 

Fig. 2. Place-and-route overview. 



 

 

 

Fig. 3. Example annotated netlist for a half bridge module with two 

devices in parallel per switch position. Note the additional parameters 

specified by the lines preceded with an asterisk.  

helps to constrain the layout problem. Second, this opens up the 
potential for a circuit designer to quickly come up with a custom 
power module layout that fits their system design 
requirements—such as busbar geometry and gate driver 
locations. 

Once the netlist has been imported and the terminals placed 
within the module outline, the netlist is parsed and connected 
components identified. This information is then used to populate 
the layout with the required devices and apply spring 
connections among them and their respective terminals, as 
explained in II.B. Following that, the grid-based routing 
algorithm again uses the netlist information to ensure 
connectivity of each device with its respective nets. Finally, the 
layout can be exported to PowerSynth where trace geometries 
and component locations are varied to explore electrical, 
thermal, and mechanical design-space tradeoffs. 

The following sections cover the two main aspects of this 
routine in detail. It should be noted that, while the methods 
themselves are somewhat naïve, these simple rules are part of a 
larger effort to develop a platform for developing and testing 
algorithms for power module layout synthesis. As such, this 
prototype tool—mainly developed in Python and JavaScript—is 
not complete and follows a few caveats. These are addressed in 
the following sections and summarized in Section IV. 

B. Force-Directed Placement 

Placement of the devices relative to their connected 
components and terminals is done by applying spring forces 
among them in a force-directed placement routine as in [8-10]. 
First, terminals are placed in fixed locations as specified in the 
annotated netlist. Next, components are initially placed in 
random locations within the module footprint. These 

components could include various types of transistors, diodes, 
or passive elements. However, for the purpose of this 
explanation, only vertical MOSFETs are considered with drain, 
gate, source, and Kelvin source connections.  

Once the layout is populated with devices, spring forces are 
applied among them, between them and their respective 
terminals, and between them and the boundary walls of the 
footprint. In general, these spring forces are defined using the 
Hooke’s law as noted in [11] and shown below: 

 𝐹 = −𝑘Δ𝑠 (1) 

where F is the force applied to each device,  k  is the spring 
constant, and Δ𝑠 the Euclidean distance between two connected 
components minus the rest length of the spring connecting them. 

Paralleled MOSFETs sharing the same drain trace are 
considered to be a device group. Within such a group, springs 
forces are attractive, such as with M1 and M2 in Fig. 4. Each 
device in this group is also attached with an attractive force 
between themselves and their connected terminals (e.g., T1). 
Among all device pairs from groups other than their own, 
repulsive springs are inserted, as with M1 and M3 in Fig. 4. Not 
shown in this figure are the boundary forces applied to each 
device that are applied between the device and the four walls of 
the layout. For repulsive forces, a modified version of the 
equation above is used where a coefficient c is introduced to give 
a logarithmic response where the force grows as the components 
approach each other as shown below: 

 
𝐹 = −𝑘 log (

Δ𝑠

𝑐
) 

(2) 

There are several design variables that are randomly 
determined to provide flexibility in the resulting layouts. These 
include initial device positions, device mass, damping forces, 
spring coefficients, and spring rest lengths.  

 

Fig. 4. Spring force illustration showing attractive (single-ended 

arrows) and repulsive (double-ended arrows) among layout 

components and terminals. 



 

 

 

Fig. 5. Half-bridge component placement for layout with two devices 

per switch position. (a) Initial placement. (b) Intermediate results. (c) 

Final relative placement results ready for routing. 

 Solving this spring system is performed iteratively, in real-
time, as the forces are updated and applied to each component 
to calculate their velocities and positions sixty times per second. 
This was chosen to ease development and debugging but has the 
downside of not being comparable in terms of run-time to other 
algorithms at this point. Despite this, the routine halts when the 
average system velocity approaches zero and generally 
completes within 10 seconds for simple designs. An example of 
several successive iterations of this process on a half-bridge 
module is shown in Fig. 5. 

 

Fig. 6. Breadth-first search of grid cells to form traces. 

C. Grid-Based Routing 

Once the relative positioning of devices and terminals are 
established using the force-directed placement routine, a grid-
based routing algorithm is used to create traces for all of the 
signal and power connections. Fundamentally, this routine relies 
on simple rules for assigning traces groups to the grid cells that 
depend on the state of their neighbors. This is accomplished 
using the breadth-first search routine in Fig. 6 and illustrated in 
Fig. 7. 

A blank grid is sized proportionally to the layout with cells 
of user-defined resolution to begin this process. All of these cells 
are empty initially. During the initialization phase, the cells 
under each device and terminal are assigned a group designation 
reflecting the net they share in the annotated netlist. A cell that 
has a group designation is assigned the state of locked and will 
not be changed throughout this procedure. The routine begins by 
visiting each cell and pausing when it reaches a locked one. 
Then, from that locked cell, the neighboring cells in four 
directions are visited, as in Fig. 7 (a). Once a neighbor is visited, 
its group assignment is checked. If no assignment has been 
made, then the neighbor cell takes the state of the original cell 
and is locked. Otherwise, if the neighboring cell has a group 
assigned, it is ignored, and the algorithm continues. Once all 
neighbors of a locked cell are visited, then the next locked cell 
in the grid is visited, and the search continued. However, any 
neighboring cell that has just been assigned a group and locked 
will not be considered in this iteration of the routine. This 
ensures that cells from one group do not dominate the grid—as 
would be the case in a depth-first search.  

One other important step occurs during cell initialization and 
prior to execution. This step draws a shortest line path between 
paralleled devices and the terminal they share for their drain 
connection using the netlist information. This is shown in Fig. 8 
(a) where Bresenham’s line algorithm [11] is used to assign the 
same group to cells between each paralleled device and their 
drain-side terminal. After that, the search algorithm continues as 
shown in Fig. 8 (b), and halts once all of the cell states are 
locked. 



 

 

 

Fig. 7. Assigning group designations to cells based on initial starting 

conditions and neighboring cell states. 

 

Fig. 8. Routing routine for the half bridge layout with (a) initialization 

phase using Bresenham's line algorithm and (b) results after a few 

iterations. Here each color represents a different trace group. 

As a final step, a naïve solution for bondwire routing from 
each device pad to its respective traces has been implemented. 
This simply connects each device pad to its closest trace with a 
wire and returns the start and endpoint coordinates. While 

effective, a more sophisticated algorithm is necessary to prevent 
wirebond crossing and overlap. 

Similar to the placement algorithm, this also runs in real-
time at sixty frames per second, with one cell and its neighbors 
being visited per frame. The layout in Fig. 8 takes under two 
seconds to compute. 

III. RESULTS 

The final place-and-route results for the half bridge module 
presented throughout this paper are shown in Fig. 9. The goal of 
this work is to eventually automate the export of such a layout 
as initial input for PowerSynth. However, a one-click solution 
for this is still in development. One of the many challenges 
associated with this is that while the place-and-route routine can 
produce designs with non-Manhattan trace geometries, the 
current version of PowerSynth cannot. Therefore, the final step 
of transferring the design to PowerSynth is done manually with 
results shown in Fig. 10 where the PowerSynth layout engine 
has generated a starting-point layout ready for optimization. 

When using this proposed methodology, many variations of 
a design can be quickly created from the same netlist file. Fig. 
11 (a) contains an example of this where two half-bridge layouts 
have been generated using this place-and-route routine from a 
half-bridge netlist with three devices per switch position. The 
resulting starting-point layouts generated by PowerSynth are 
shown in Fig. 11(b). 

 

Fig. 9. Final placement and routing of the half-bridge module with 

wirebond connections.

Fig. 10. Half-bridge layout generated by PowerSynth and based on 

the results in Fig. 9. 



 

 

 

Fig. 11. Two layouts generated using the proposed place and route 

methodology (a) and their corresponding initial layouts in PowerSynth 

IV. CONCLUSION AND FUTURE WORK 

By looking for inspiration in adjacent and more mature 
fields, this work explores the potential for using VLSI placement 
techniques with a grid-routing algorithm to automate the 
generation of power module layouts given an annotated netlist. 
While more work on these techniques is needed to introduce 
greater degrees of design freedom and robustness, this prototype 
demonstration shows a clear methodology that produces varying 
layout results with minimal user input in a short amount of time. 
As development progresses, more case studies will be performed 
using more nuanced techniques toward the goal of expanding 
the PowerSynth layout optimization design space. 
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