
978-0-7381-1301-2/21/$31.00 ©2021 IEEE

Placement and Routing for Power Module Layout

Tristan M. Evans

Electrical Engineering Department

University of Arkansas

Fayetteville, AR, USA

tmevans@uark.edu

Yarui Peng

Computer Science and

Computer Engineering Department

University of Arkansas

Fayetteville, AR, USA

yrpeng@uark.edu

H. Alan Mantooth

Electrical Engineering Department

University of Arkansas

Fayetteville, AR, USA

mantooth@uark.edu

Abstract— PowerSynth is a tool for the generation and multi-

objective optimization of power module layouts. However, this

generation is limited to variations of the initial layout sketched by

a designer. In an effort to provide a deeper and more thorough

exploration of the resulting design space, this paper proposes a

placement and routing methodology adapted from VLSI

techniques to provide a more diverse set of starting point layouts

for PowerSynth optimization through synthesis of a circuit netlist.

An overview of this method is presented along with prototype

results of a continuous, force-directed placement routine. This

paper demonstrates the proposed design flow, including

PowerSynth initial layout results.

Keywords—power module, layout optimization, electronic design

automation

I. INTRODUCTION

The design automation of power electronics modules is
gaining steady traction in recent years with several tools and
techniques being introduced to help aid the designer in exploring
design space tradeoffs [1-4]. Among these tools, PowerSynth [5-
7], uses a unique constraint-aware layout engine to rapidly
generate feasible, manufacturable iterations of a power module
design while optimizing for electrical parasitics, thermal
performance, and mechanical reliability. The results of which
are presented to the user on a Pareto frontier of tradeoffs in the
design spaces chosen. However, while PowerSynth excels at
quickly producing and evaluating layouts, these generated
layouts are inherently variations of a single, starting point
artwork as shown in Fig. 1 and Table I and adapted from [7].

In order to further expand the design space considered by
PowerSynth, it is necessary to create a more diverse set of initial
layouts for a given design. Additionally, the introduction of
another layer of abstraction on top of the PowerSynth layout
engine would allow greater flexibility of use for power systems
designers in exploring system-level tradeoffs. For these reasons,
this work proposes a modified place-and-route routine that
synthesizes power module layouts from a circuit netlist and
produces a plurality of starting point layouts immediately ready
for further evaluation using PowerSynth.

In approaching issues related to power module layout
synthesis, a good candidate field to draw inspiration from is that
of VLSI (very large-scale integration) design automation. In this

Fig. 1. The initial layout for PowerSynth and resulting optimized

layouts

design flow, synthesis results in a gate-level netlist that is then
combined with additional design files to specify the physical
design. In general, layout partitioning breaks up the design into
several smaller subsystems to be addressed individually.
Floorplanning handles the arrangement of these subsystems
within the layout while placement and routing steps are
introduced to connect all of the subsystems and optimize for
metrics like wirelength and timing.

This material is based on work supported by The National Science
Foundation under Grant No. EEC-1449548. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation

TABLE I. LAYOUT PERFORMANCE METRICS

Dimensions

(mm)
Inductance

(nH)
RTH

(Wm-1K-1)
Stress
(MPa)

Layout 1 50x30 9.93 0.204 556

Layout 2 84x34 7.23 0.206 704

Layout 3 106x61 9.26 0.203 816

When it comes to power electronics, a similar vein of
thinking can be applied where converters and systems are
comprised of power electronics building blocks that can be
optimized individually before integration. These building blocks
can also take the form of power modules that are comprised of
varying arrangements of switching cells to achieve different
topologies and current ratings. So, to further the design
automation of power electronic modules and systems, the
methods and algorithms from the mature field of VLSI design
make great candidates for adaptation. A comparison of some
aspects of VLSI and power module physical design has been
adapted from [3] and presented in Table II. One fortunate
conclusion that can be drawn from this is that since the number
of devices and types of topologies employed in power modules
is so much less, this can help to constrain aspects related to
placement and routing in the early stages of this work.

TABLE II. VLSI VS. POWERMODULE LAYOUT ASPECTS

 VLSI Layout Power Module Layout

Component
Count

High
(up to billions)

Low
(generally <20 [3])

Component
Dimensions

Regular Irregular

Routing
Layers

Multiple

Single
(generally, with multi-
layer and 3D primarily

in academic works)

Primary
Measurements

Footprint,
timing delay

Footprint,
electrical parasitics,

junction temperature,
mechanical stress

II. PLACE-AND-ROUTE ROUTINE

A. Overview

The main purpose of this work is to develop methods and
algorithms necessary to automate the steps in synthesizing a
power module design from a circuit netlist to an initial layout for
the EDA tool PowerSynth. This is accomplished by adapting
VLSI techniques such as force-directed placement along with a
simple grid-based routing algorithm.

The main steps associated with these methods involve the
placement of terminals and devices relative to them before
routing the power and signal traces then determining bondwire
locations. An illustration of the place-and-route routine is shown
in Fig. 2. A user-supplied annotated circuit netlist is used to
initialize the process by not only establishing the connectivity of
components relative to terminals, but also specifying the module
footprint and desired terminal locations. The netlist follows the

same general format of an LTSpice-compatible netlist but with
a few exceptions. Chiefly, the comment token is used to flag
keywords used by this routine that include module footprint
dimensions, units, and terminal names and locations. An
example of this annotated netlist is shown in Fig. 3. The reasons
behind providing module footprint and terminal locations in this
netlist are two-fold. First, using the terminals as fixed points

Fig. 2. Place-and-route overview.

Fig. 3. Example annotated netlist for a half bridge module with two

devices in parallel per switch position. Note the additional parameters

specified by the lines preceded with an asterisk.

helps to constrain the layout problem. Second, this opens up the
potential for a circuit designer to quickly come up with a custom
power module layout that fits their system design
requirements—such as busbar geometry and gate driver
locations.

Once the netlist has been imported and the terminals placed
within the module outline, the netlist is parsed and connected
components identified. This information is then used to populate
the layout with the required devices and apply spring
connections among them and their respective terminals, as
explained in II.B. Following that, the grid-based routing
algorithm again uses the netlist information to ensure
connectivity of each device with its respective nets. Finally, the
layout can be exported to PowerSynth where trace geometries
and component locations are varied to explore electrical,
thermal, and mechanical design-space tradeoffs.

The following sections cover the two main aspects of this
routine in detail. It should be noted that, while the methods
themselves are somewhat naïve, these simple rules are part of a
larger effort to develop a platform for developing and testing
algorithms for power module layout synthesis. As such, this
prototype tool—mainly developed in Python and JavaScript—is
not complete and follows a few caveats. These are addressed in
the following sections and summarized in Section IV.

B. Force-Directed Placement

Placement of the devices relative to their connected
components and terminals is done by applying spring forces
among them in a force-directed placement routine as in [8-10].
First, terminals are placed in fixed locations as specified in the
annotated netlist. Next, components are initially placed in
random locations within the module footprint. These

components could include various types of transistors, diodes,
or passive elements. However, for the purpose of this
explanation, only vertical MOSFETs are considered with drain,
gate, source, and Kelvin source connections.

Once the layout is populated with devices, spring forces are
applied among them, between them and their respective
terminals, and between them and the boundary walls of the
footprint. In general, these spring forces are defined using the
Hooke’s law as noted in [11] and shown below:

 𝐹 = −𝑘Δ𝑠 (1)

where F is the force applied to each device, k is the spring
constant, and Δ𝑠 the Euclidean distance between two connected
components minus the rest length of the spring connecting them.

Paralleled MOSFETs sharing the same drain trace are
considered to be a device group. Within such a group, springs
forces are attractive, such as with M1 and M2 in Fig. 4. Each
device in this group is also attached with an attractive force
between themselves and their connected terminals (e.g., T1).
Among all device pairs from groups other than their own,
repulsive springs are inserted, as with M1 and M3 in Fig. 4. Not
shown in this figure are the boundary forces applied to each
device that are applied between the device and the four walls of
the layout. For repulsive forces, a modified version of the
equation above is used where a coefficient c is introduced to give
a logarithmic response where the force grows as the components
approach each other as shown below:

𝐹 = −𝑘 log (

Δ𝑠

𝑐
)

(2)

There are several design variables that are randomly
determined to provide flexibility in the resulting layouts. These
include initial device positions, device mass, damping forces,
spring coefficients, and spring rest lengths.

Fig. 4. Spring force illustration showing attractive (single-ended

arrows) and repulsive (double-ended arrows) among layout

components and terminals.

Fig. 5. Half-bridge component placement for layout with two devices

per switch position. (a) Initial placement. (b) Intermediate results. (c)

Final relative placement results ready for routing.

 Solving this spring system is performed iteratively, in real-
time, as the forces are updated and applied to each component
to calculate their velocities and positions sixty times per second.
This was chosen to ease development and debugging but has the
downside of not being comparable in terms of run-time to other
algorithms at this point. Despite this, the routine halts when the
average system velocity approaches zero and generally
completes within 10 seconds for simple designs. An example of
several successive iterations of this process on a half-bridge
module is shown in Fig. 5.

Fig. 6. Breadth-first search of grid cells to form traces.

C. Grid-Based Routing

Once the relative positioning of devices and terminals are
established using the force-directed placement routine, a grid-
based routing algorithm is used to create traces for all of the
signal and power connections. Fundamentally, this routine relies
on simple rules for assigning traces groups to the grid cells that
depend on the state of their neighbors. This is accomplished
using the breadth-first search routine in Fig. 6 and illustrated in
Fig. 7.

A blank grid is sized proportionally to the layout with cells
of user-defined resolution to begin this process. All of these cells
are empty initially. During the initialization phase, the cells
under each device and terminal are assigned a group designation
reflecting the net they share in the annotated netlist. A cell that
has a group designation is assigned the state of locked and will
not be changed throughout this procedure. The routine begins by
visiting each cell and pausing when it reaches a locked one.
Then, from that locked cell, the neighboring cells in four
directions are visited, as in Fig. 7 (a). Once a neighbor is visited,
its group assignment is checked. If no assignment has been
made, then the neighbor cell takes the state of the original cell
and is locked. Otherwise, if the neighboring cell has a group
assigned, it is ignored, and the algorithm continues. Once all
neighbors of a locked cell are visited, then the next locked cell
in the grid is visited, and the search continued. However, any
neighboring cell that has just been assigned a group and locked
will not be considered in this iteration of the routine. This
ensures that cells from one group do not dominate the grid—as
would be the case in a depth-first search.

One other important step occurs during cell initialization and
prior to execution. This step draws a shortest line path between
paralleled devices and the terminal they share for their drain
connection using the netlist information. This is shown in Fig. 8
(a) where Bresenham’s line algorithm [11] is used to assign the
same group to cells between each paralleled device and their
drain-side terminal. After that, the search algorithm continues as
shown in Fig. 8 (b), and halts once all of the cell states are
locked.

Fig. 7. Assigning group designations to cells based on initial starting

conditions and neighboring cell states.

Fig. 8. Routing routine for the half bridge layout with (a) initialization

phase using Bresenham's line algorithm and (b) results after a few

iterations. Here each color represents a different trace group.

As a final step, a naïve solution for bondwire routing from
each device pad to its respective traces has been implemented.
This simply connects each device pad to its closest trace with a
wire and returns the start and endpoint coordinates. While

effective, a more sophisticated algorithm is necessary to prevent
wirebond crossing and overlap.

Similar to the placement algorithm, this also runs in real-
time at sixty frames per second, with one cell and its neighbors
being visited per frame. The layout in Fig. 8 takes under two
seconds to compute.

III. RESULTS

The final place-and-route results for the half bridge module
presented throughout this paper are shown in Fig. 9. The goal of
this work is to eventually automate the export of such a layout
as initial input for PowerSynth. However, a one-click solution
for this is still in development. One of the many challenges
associated with this is that while the place-and-route routine can
produce designs with non-Manhattan trace geometries, the
current version of PowerSynth cannot. Therefore, the final step
of transferring the design to PowerSynth is done manually with
results shown in Fig. 10 where the PowerSynth layout engine
has generated a starting-point layout ready for optimization.

When using this proposed methodology, many variations of
a design can be quickly created from the same netlist file. Fig.
11 (a) contains an example of this where two half-bridge layouts
have been generated using this place-and-route routine from a
half-bridge netlist with three devices per switch position. The
resulting starting-point layouts generated by PowerSynth are
shown in Fig. 11(b).

Fig. 9. Final placement and routing of the half-bridge module with

wirebond connections.

Fig. 10. Half-bridge layout generated by PowerSynth and based on

the results in Fig. 9.

Fig. 11. Two layouts generated using the proposed place and route

methodology (a) and their corresponding initial layouts in PowerSynth

IV. CONCLUSION AND FUTURE WORK

By looking for inspiration in adjacent and more mature
fields, this work explores the potential for using VLSI placement
techniques with a grid-routing algorithm to automate the
generation of power module layouts given an annotated netlist.
While more work on these techniques is needed to introduce
greater degrees of design freedom and robustness, this prototype
demonstration shows a clear methodology that produces varying
layout results with minimal user input in a short amount of time.
As development progresses, more case studies will be performed
using more nuanced techniques toward the goal of expanding
the PowerSynth layout optimization design space.

ACKNOWLEDGMENT

The authors would like to thank Quang Le for help in testing
and generating results for this paper.

REFERENCES

[1] M. Hammadi, J. Y. Choley, O. Penas, J. Louati, A. Rivière, and M.
Haddar. “Layout optimization of power modules using a sequentially
coupled approach.” International Journal of Simulation Modelling,
10(3):122-132, 2011.

[2] U. Drofenik, D. Cottet, A. Muesing, and J. W. Kolar. “Design Tools for
Power Electronics : Trends and Innovations.” Ingénieurs de l'automobile,
791:55-62, 2007.

[3] P. Ning, F. Wang, K. D. T. Ngo. “Automatic Layout Design for Power
Module.” IEEE Transactions on Power Electronics, 28(1):481-487, 2013.

[4] P. Ning, X. Wen, Y. Li, and X. Ge. “An improved automatic layout
method for planar power module.” In Conference Proceedings - IEEE
Applied Power Electronics Conference and Exposition - APEC, volume
2016-May, pages 3080-3085, 2016.

[5] T. M. Evans, Q. Le, S. Mukherjee, I. Al Razi, T. Vrotsos, Y. Peng, and H.
A. Mantooth. “PowerSynth: A power module layout generation tool.”
IEEE Transactions on Power Electronics, 34(6):5063-5078, 2019.

[6] I. Al Razi, Q. Le, H. A. Mantooth, and Y. Peng. “Constraint-Aware
Algorithms for Heterogeneous Power Module Layout Synthesis and
Optimization in PowerSynth.” IEEE Workshop on Wide Bandgap Power
Devices and Applications, pages 323-330, October 2018.

[7] T. Evans, S. Mukherjee, Y. Peng, and H. A. Mantooth. “Electronic Design
Automation Tools and Considerations for Electro-Thermo-Mechanical
Co-Design of High Voltage Power Modules.” IEEE Energy Conversion
Congress and Exposition, 2020.

[8] A. B. Kahng, J. Lienig, I. L. Markov, J. Hu. VLSI Physical Design: From
Graph Partitioning to Timing Closure, Springer, New York, 2011.

[9] C. J. Alpert, D. P. Mehta, S. S. Sapatnekar. Handbook of Algorithms for
Physical Design Automation, CRC Press, Boca Raton. 2009.

[10] N. R. Quinn, M. A. Breuer, “A Forced Directed Component Placement
Procedure for Printed Circuit Boards,” IEEE Transactions on Circuits and
Systems, 26(6):377-388 1979.

[11] J. E. Bresenham, "Algorithm for Computer Control of a Digital Plotter",
IBM Systems J., vol. 4, no. 1, pp. 25-30, Jan. 1965.

