
IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 11, NO. 5, MAY 2021 715

Holistic Chiplet–Package Co-Optimization for
Agile Custom 2.5-D Design

MD Arafat Kabir , Graduate Student Member, IEEE , and Yarui Peng , Member, IEEE

Abstract— With the increasing popularity and applications
of 2.5-D integration, both chip and packaging industries are mak-
ing significant progress in this direction. In advanced high-density
2.5-D packages, package redistribution layers become similar
to chiplet back-end-of-line routing layers, and the gap between
them scales down with pin density improvement. Chiplet–package
interactions become significant and severely affect system perfor-
mance and reliability. Moreover, 2.5-D integration offers opportu-
nities to apply novel design techniques. The traditional die-by-die
design approach neither carefully considers these interactions nor
fully exploits the cross-boundary design opportunities. In this
article, we present a holistic chiplet–package co-optimization
flow for high-density 2.5-D packaging technologies with little
performance overhead and zero pipeline-depth increase. Our
holistic extraction can capture all parasitics from chiplets and the
package and improve system performance through iterative opti-
mizations. Both drop-in and pay-as-you-use design methodologies
are implemented for agile development and quick turn-around
time. To prove the effectiveness of our flow, we implement
several design cases of a microcontroller system in TSMC
65-nm technology. Our design methodologies can reduce the
performance gap by 85% with respect to the 2-D reference design
after holistic optimizations. We demonstrate design flexibility and
development cost-saving by presenting several flavors of a three
chiplets system. To validate our flow in silicon, we tape-out a chip
in TSMC 65-nm technology with measured data and validated
functionality.

Index Terms— 2.5-D design, agile design, chiplet–package co-
optimization, holistic flow, redistribution layer (RDL) planning.

I. INTRODUCTION

THE demands for increased functionality and performance
for applications, such as 5G, artificial intelligence, and

high-performance computing, are pushing modern chips to
the reticle limit. The industry responses with a modular
design approach, in which a large system is broken down
into smaller functional blocks and then assembled as a com-
plete system. Traditionally, a printed circuit board (PCB) is

Manuscript received December 14, 2020; revised February 25, 2021;
accepted February 28, 2021. Date of publication March 30, 2021; date of
current version May 17, 2021. This work was supported by the National
Science Foundation under Grant 1755981. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation. Recommended for publication by Associate Editor W. T. Beyene
upon evaluation of reviewers’ comments. (Corresponding author: MD Arafat
Kabir.)

The authors are with the Department of Computer Science and Computer
Engineering, University of Arkansas, Fayetteville, AR 72701 USA (e-mail:
makabir@uark.edu; yrpeng@uark.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCPMT.2021.3069724.

Digital Object Identifier 10.1109/TCPMT.2021.3069724

Fig. 1. 2.5-D integration schemes. (a) PCB-based system. (b) Flip-chip with
an organic interposer. (c) High-density integration scheme such as wafer-
level-packaging.

used as the integration platform. Though PCBs are mature
and cost-effective, because of long and wide traces, they
suffer from high inductance and capacitance, limited band-
width, and severe power loss. To overcome these drawbacks,
the industry introduces the System-in-Package (SiP) design
approach, such as 2.5-D and 3-D packagings, which leverages
the fan-out wafer-level-packaging (FOWLP) technology. With
transistor scaling saturated, these SiP designs are becoming
popular in high-density applications, such as mobile phones
and tablets [2]. Moreover, 2.5-D packaging enables heteroge-
neous integration [3], [4] and high-bandwidth interdie com-
munication [5]. It also offers promising hardware security
applications [6], [7]. The increasing interests are driving the
industry to develop compact and high-performance FOWLP
solutions [8]. As shown in Fig. 1(a), in system integration
schemes through PCBs, the packages become sufficiently
large compared to chiplets. The FOWLP integration solutions,
as depicted in Fig. 1(c), have chip-scale packages with very
fine pitch and shorter interconnects, making them promising
candidates for high-performance system design. In the last
few years, the industry has developed so many FOWLP
technologies [9]–[11]. In every iteration of these technologies,
the package wires become thinner and denser, bringing chips
and packages very close with a reduced pad size.

In the traditional flow, 2.5-D systems are designed in a
die-by-die (DbD) approach where each chiplet is designed
independently as a single unit, and then, all chiplets are
mounted on the package as a complete system. The analysis

2156-3950 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9920-2985
https://orcid.org/0000-0002-8550-2063


716 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 11, NO. 5, MAY 2021

Fig. 2. (a) Traditional die-by-die design flow of a 2.5-D system versus (b) our
proposed holistic (Holi) iterative optimization flow.

and optimization of chiplets and the package are also con-
ducted separately without consideration of the interactions
between them [12], [13]. Fig. 2(a) illustrates this traditional
flow in which chiplets and the package never interact with
each other until they are fabricated and assembled. During
package design, a chiplet is approximated as a ground mesh
or plane. In this approach, it is possible to achieve the shortest
possible turn-around time using off-the-shelf chiplets in a
plug-and-play manner [12]. This flow is sufficient when the
gap between chiplets and the package is large enough to make
the interactions between them minimal. As shown in Fig. 1(b),
in flip-chip WLP, this gap is around 30–50 µm. In such
integration technologies, the traditional flow can be used
without any critical problem. However, due to the industry’s
aggressive development and the adoption of bumpless contact
pads [4], this gap is decreasing rapidly [14]–[17]. Within a few
years, this gap is reduced from tens of µm to 1.5 µm [16].
With this scaling trend, the chiplet–package gap will reduce
to the submicrometer level, making the interactions between
chiplets and the package more significant and critical to system
reliability. To handle such high-density integration schemes,
a cross-boundary design flow is required, which can capture
these interactions during the design and optimization steps of
both chiplet and package.

In the die-by-die approach, the complete system is not
considered as a whole. Therefore, it is not possible to obtain
a globally optimized system though individual chiplets may
perform well. Because of the pin-dominated nature of package
routing, it can get overly complicated, introducing unnecessary
package overhead due to detours if chiplet pins are not planned
properly. As all the chiplets work together as a single system,
timing optimizations need to be performed at the system level.
While planning the package, it may be necessary to rearrange
the chiplets pin configurations to obtain a compact package
routing to minimize package wire delays. The postdesign

analysis tools need to consider chiplets and package inter-
actions to avoid signal reliability issues, potentially causing
system failure.

Apart from heterogeneous integration, 2.5-D integration
technology enables the chiplet design approach. A large
ASIC chip can be partitioned into smaller chiplets in order
to increase yield through the use of the known-good-dies
(KGD) [18]. In such systems, to ensure reliable interchiplet
communication, an additional stage in the pipeline, such as
SerDes [3], [15], would be necessary to hide IO overhead.
This would require changes at the architecture level. Changes
in architecture require sufficient engineering efforts and are
not so quick and flexible. Though this is not an issue for large
design houses, small ASIC design companies may not have
enough resources and time for such architecture exploration.
In that case, a large engineering design margin needs to be
left such that the IOs from different chiplets can communi-
cate with each other within the design tolerance. Novel IO
designs [19], [20] have been proposed for 2.5-D systems,
which will significantly reduce the IO overhead and power
consumption. However, as these cells are not designed for
driving long redistribution layer (RDL) wires with many tech-
nology variations, parasitics and static timing analysis (STA)
must be performed very carefully to avoid potential violations
to the overall system performance and signal integrity issues.

In this article, we present our holistic 2.5-D chiplet–package
codesign and optimization flow that employs a cross-boundary
strategy to design chiplets and the package together. Fig. 2(b)
shows the overall steps of our flow. In this flow, chiplets and
the package are assembled in a common design environment
during planning and analysis steps for holistic consideration.
This shared layout database allows exchanging necessary
cross-boundary design information to capture coupling and
mutual interactions, which is essential to achieve high analysis
accuracy, co-optimization of the chiplets, and reliable system
design.

Through the study of several 2.5-D design cases of an
ARM Cortex-M0-based microcontroller system, we illustrate
the effectiveness and flexibility of our flow. To verify our flow
in silicon, we taped out and studied a chip that is designed
using our flow in TSMC 65-nm technology. Through the work
presented in this article, we claim the following contributions:
1) ASIC-CAD-compatible holistic flow that can design, opti-
mize, and analyze 2.5-D systems with high-density FOWLP
technologies; 2) a study of the necessity and effectiveness
of holistic extraction and STA on 2.5-D systems designed in
commercial technologies; 3) illustration of design flexibility
and speed offered by our holistic flow with both drop-in and
pay-as-you-use design strategies; and 4) silicon validation of
our flow with a 2-D/2.5-D tape-out design in TSMC 65-nm
technology.

Our flow is most useful when a 2.5-D system needs to
be designed from its register-transfer level (RTL) description
targeting the best performance achievable and take advantage
of the modularity, flexibility, customization, and yield benefits
offered by the 2.5-D integration technology. To the best of
our knowledge, there exists no previous work that implements
silicon-verified holistic flow to design 2.5-D systems and

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



KABIR AND PENG: HOLISTIC CHIPLET–PACKAGE CO-OPTIMIZATION FOR AGILE CUSTOM 2.5-D DESIGN 717

Fig. 3. System architecture of the ARM Cortex-M0-based microcontroller.

illustrates its effectiveness, flexibility, and speed through the
study of design cases in commercial technologies. Our holistic
flow for 2.5-D systems is available at [1].

II. DESIGN SETTINGS AND CAD FLOW

A. Architecture and Chiplet Partitions

Fig. 3 shows the system architecture of the microcon-
troller system we use to illustrate our flow. It has an ARM
Cortex-M0 processor core connected to the rest of the system
through AMBA high-performance bus (AHB). The AHB bus
is connected to the system controller, two GPIO modules,
an ROM table, the memory interface, and an advanced periph-
eral bus (APB) subsystem. The APB subsystem consists of
a watchdog timer, two simple timers, a dual-timer, UART
modules, and so on. The system has a total of 16-KB mem-
ory divided into four 4-KB banks. The memory interface
is designed in a way that each bank occupies a contiguous
address range. As a result, the system can operate even if
some of the memory banks addressed by the upper address
range are not present. RAM and ROM macros are compiled
using ARM memory compilers.

To implement the microcontroller as a 2.5-D system,
we partition it into two chiplets. We studied several par-
titioning algorithms and design schemes to understand the
impact of package wires during the partition stage [21].
We compared area-balanced partitions using hMetis [22] and
FLARE [23] algorithms, logic-versus-memory scheme, and
architecture-aware scheme. In the balanced-area and logic-
versus-memory partitions, the chiplet areas are not sufficient to
accommodate all the pins. In the architecture-aware partition
scheme, we use our knowledge of architecture to come up with
a partition in which the chiplets can accommodate all of their
pins with reasonable pin-pitch. We use the architecture-aware
partition scheme for our experimental studies presented in the
latter part of this article. This scheme helps us illustrate the
drop-in design approach, which allows several flavors of a
2.5-D system with zero design cost. In this partition scheme,
we gather all core logic and 8 KB of memory residing in the
lower 8k address range into a Core chiplet. In the other Mem
chiplet, we only keep the rest of 8 KB of memory with a few
control logic. As a result, the Core chiplet can operate as a
standalone system with or without the Mem chiplet.

B. Technology Settings

We use the TSMC 65-nm technology to implement a
2-D design and 2.5-D chiplets. In our holistic flow, we need a

unified environment where both chiplet and package designs
can be imported together for holistic planning and extraction.
Moreover, there is no publicly available PDK to design 2.5-D
packages for academic study. Therefore, we modified the PDK
to create a unified chiplet–package codesign environment with
all chiplet and package layers together.

Table I shows the settings of our modified PDK. We use the
lower seven metal layers (M1-M7) with their original settings
for chiplet internal routing. The parameters of M8, M9, M10,
and the relevant dielectric layers are modified to mimic the
attributes of TSMCs InFO package routing layers. Though
the most advanced InFO flavors can handle 0.8-µm/0.8-µm
width/spacing [17], we use 10 µm/10 µm for a general
setup. Fig. 4 shows the layer stack of our modified PDK. For
holistic extraction, we characterize this technology stack to
generate an extraction-rule file. In an industrial design, this
extraction-rule file would be provided by the packaging house
through characterization of the chiplet–package technology
combination that they support.

C. Overall CAD Flow

Our overall flow is illustrated in Fig. 2(b). When the RTL
netlist is ready, the gate-level netlist is synthesized using a
standard synthesis tool. The gate-level netlist is then fed to
the partitioning tool along with the partition scheme settings.
The partition tool takes into account the impacts of package
wires on chiplet partitions. Next, we prepare the top-level
plan of chiplets and the package together in the same design
environment set up with the unified PDK. We determine
package floorplan and chiplet pin arrangement with an algo-
rithm that reduces the package routing issues, such as long
wires or detours, and minimize package wire impacts on
system performance. Next, we generate an initial package
routing and estimate the package wireload on chiplet IO pins.
We perform timing budget extraction of all chiplets and the
package. Then, we split the overall design into individual
chiplet and package subdesigns for parallel implementation. In
Fig. 2(b), the “Chiplet Plan” boxes refer to plans of different
chiplets, one plan for each chiplet. Though these chiplet plans
are related through the top-level constraints, each plan is
independent, and all plans can be implemented in parallel.

After coplanning and RDL routing, chiplets and the package
can be implemented independently with contexts and con-
straints propagated from the top level. We perform package
design utilizing the chiplet footprints, their connectivity, and
the timing budget of package wires. The physical design of
each chiplet is similar to the traditional 2-D chip design flow
with some additional constraints imposed by the top-level
plan. After placement and routing, design rule checking (DRC)
is performed on all chiplets individually. If all chiplets pass
the DRC, the entire system is assembled together for further
optimizations and analyses.

The design assemble step combines chiplet and package
designs into the same unified design environment as in
the top-level planning stage. Because of this, optimization
and analysis can capture chiplet–package interactions and
perform adjustments to improve system performance and
reliability. We perform holistic extraction, and the result is

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



718 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 11, NO. 5, MAY 2021

TABLE I

TECHNOLOGY PARAMETERS OF OUR MODIFIED 65-NM LAYER STACK

Fig. 4. Package RDL stack of our modified 65-nm PDK.

used for STA and timing context generation. These timing
contexts are used to perform the next iterations of individ-
ual chiplets. This holistic optimization using standard tools
improves system performance with buffer resizing, time bor-
rowing, rerouting, and so on. The following iterations can
be carried out if there is a scope of improvement, but, with
a good estimation at the beginning, the second iteration is
generally accurate enough. Finally, we assemble all the fin-
ished designs for full-system extraction, analysis, and sign-off
verifications.

III. CHIPLET–PACKAGE COPLANNING AND MODELING

A. Top-Level Planning

The RDL routing problem of a 2.5-D package is differ-
ent from the conventional chip routing problem. Existing
works [24]–[26] try to solve the routability between chiplet
pins in the system. However, compared to the chip routing
problem, the number of nets on the package level is much
fewer, and signal integrity issues are mainly caused by skewed
long wires. As a result, minimizing total wire length is not
always the primary concern. Several other factors, such as
bus delay skew, signal-integrity, the inductive effect of long
package wires, and EMI effects, can play a critical role. All
these factors can be considered in the top-level planning stage
of a 2.5-D system. In our strategy, we focus on developing a
compact RDL routing plan with short and uniform wire lengths
to minimize routing issues, such as congestion, detours, and
unequal bus wire delays between chiplets.

Chiplet dimensions and pin pitch are determined based
on the chiplet area and pin count. In our implementation,
the Core chiplet has dimensions 520 µm × 475 µm and a total
of 100 pins. The Mem chiplet has the dimension of 415 µm
× 230 µm and a total of 60 pins. The pins of the Core
chiplet are arranged in a 10 × 10 grid, and those of the Mem
chiplet are arranged in a 6 × 10 grid. In both chiplets, the pin
pitch is 40 µm in both directions of the grid. Without loss of
generality, we consider two chiplets at a time in the coplanning
step. In our strategy, we assign signals to chiplet pins after the
package floorplan and routing are determined. The top-level

Fig. 5. Illustration of pin fan-out and track assignment of a chiplet with
6 × 6 pin grid and two RDLs.

package and chiplet plans are determined through pin fan-out
of chiplets, RDL track assignment, package floorplanning
and routing, slack-based greedy signal assignment of package
wires, and package wireload estimation. Algorithm 1 describes
our coplanning strategy.

B. Pin Fan-Out and RDL Track Assignment

Before a chiplet pin can be routed externally, it needs to
cross its chiplet boundary. We use a greedy strategy to fan-out
and track the chiplet pin assignment, which tries to use short
and straight wires within a minimum number of package
layers. In Algorithm 1, lines 5–11 show our pin fan-out
and track assignment strategy. For the sake of illustration
and explanation, we assume a cut-line between two chiplets,
as shown in Fig. 6. This cut-line acts as the routing target
in this step. We bring as many internal pins as we can to
the chiplet boundary using all the RDL routing tracks that
cross the boundary. We name the boundary locations where
the pins are routed to as “boundary points.” This is performed
in a specific order on all sides of the chiplet. For each side,
the layer touching the contact pads is routed first, followed by
the subsequent RDLs. From line 3 of Algorithm 1, the side
order is determined based on their rough distance from the cut-
line. The number of rows/columns of pins that can be routed
to boundary points depends on the pin pitch in terms of the
package routing track. As shown in Fig. 5, if the pin pitch is
two tracks, two rows/columns of pins adjacent to that side can
be routed to the boundary points following those tracks.

Next, we assign tracks to these boundary points. The
boundary point closest to the cut-line is assigned with its
nearest track first. From line 9 of Algorithm 1, boundary points
are sorted based on their distances from the cut-line. As a
result, in the track assignment queue, the boundary points

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



KABIR AND PENG: HOLISTIC CHIPLET–PACKAGE CO-OPTIMIZATION FOR AGILE CUSTOM 2.5-D DESIGN 719

Algorithm 1 RDL Planning Algorithm

1 Calculate area required for the chiplets
2 Generate pin array based on pin pitch and chiplet area
3 sideOrder = [near cut-line, top, bottom, opposite side]
4 layer Order = [RDL layers from bottom to top]
5 foreach Chiplet do
6 foreach s in sideOrder do
7 foreach l in layerOrder do
8 Route pins to the Boundary Points of s on l
9 Sort Boundary Points in increasing order of their

distance from cut-line
10 foreach bp in BoundaryPoints do
11 Assign the nearest available track to bp
12 while Floorplan not valid do
13 Floor plan = New relative position of the chiplets
14 Check if Floorplan is valid
15 Connect pin pairs routed to the same track
16 AssignSignals(Tracks, Nets, Slack)
17 WireLoadEst(Tracks, PDK.WireLoadModel)
18 Generate TCL script and SDC files

facing the cut-line come first, followed by boundary points
on the perpendicular side and the opposite side, sorted in
increasing order by their distances to the cut-line. The opposite
side is least preferred because of the detours introduced to
reach the cut-line. Fig. 5 shows the pin fan-out and track
assignment of a chiplet with a 6×6 pin grid and two package
layers.

C. Package Floorplan and Routing

Based on the track assignment of chiplets, their relative
locations are determined. These relative locations will deter-
mine the package floorplans, chiplet connectivity, and RDL
routing. In our current strategy, we accept a relative position
between the chiplets that can produce sufficient overlap of
the tracks to allow all their connections. Lines 12–14 of
Algorithm 1 describe our strategy to determine the package
floorplan.

Fig. 6 illustrates this strategy for connecting four pins
between the chiplets using only one RDL, where the dashed
white lines show available tracks crossing the cut-line. The
thick lines connected to chiplets represent assigned tracks to
chiplet pins. The track assignment strategy routes the pins of
Chiplet-A and Chiplet-B to their nearest tracks crossing the
cut-line separately. Next, while exploring different possible
relative positions between chiplets, the floorplans similar to
Fig. 6(b) are rejected as those have insufficient track overlap
for four connections. Among two viable solutions, in this case,
we arbitrarily pick the floorplan in Fig. 6(a), which supports
the number of connections between the chiplets. After finding
the relative position, we define the connectivity among the pins
of the two chiplets that are routed to the same track crossing
the cut-line. In this example, we connect pin A1 of Chiplet-A
to pin B1 of Chiplet-B because they are routed to the same
track. Similarly, pins A2, A3, and A4 of Chiplet-A will be
connected to pins B2, B3, and B4 of Chiplet-B, respectively.

Fig. 6. Illustration of the floorplanning strategy. (a) Accepted solution that
satisfies the pin connectivity requirement. (b) Rejected floorplan while finding
the relative location.

Unconnected pins of the chiplets, such as pin A5 of Chiplet-
A, can be used to connect with some other chiplets or to act
as external I/O.

D. Signal Assignment

With the connectivity defined, both chiplet floorplan and
pin assignment can be prepared in compliance with the rest
of the package plan. One way to perform the signal assign-
ment would be based on chiplet floorplans. In this strategy,
a designer can prepare some initial floorplans and assign
signals to the pins. Another way would be to determine
the signal assignment of the chiplet pins based on timing
requirements and then adjust chiplet floorplans to best suit the
pin configurations. We follow the latter approach and apply a
greedy algorithm for signal assignment. The AssignSignals()
function in Algorithm 2 describes our signal assignment strat-
egy. Performing the STA analysis on the synthesized gate-level
netlist, timing slacks of all package wires are collected. Based
on the floorplan and routing obtained in the previous steps, all
track lengths connecting chiplet pins are calculated. As shown
in lines 4 and 5, tracks and nets are sorted by their lengths
and slacks, respectively. As a result, in lines 7–9, the net with
the smallest slack is assigned to the track with the shortest
length. This greedy strategy assigns timing-critical nets to
shorter package wires, thus minimizes the package-wire delay
overhead on them. This eventually improves overall system
performance.

E. Package Wireload Estimation

When RDL routing and signal assignment are complete,
parasitic loads at chiplet IOs due to package wires can
be estimated. Being aware of the output load, during the
optimization steps, chiplet design tools can make necessary
adjustments, such as buffer insertion and cell resizing on IO
nets. At this point, our goal is to perform a rough estimation
of package wire loads to complete the first iteration of chiplet
implementation. More accurate parasitics can be extracted
from the assembled design for the second iteration of chiplet
implementation. We calculate the package wireload as a lin-
ear function of the wirelength. The function WireLoadEst()

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



720 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 11, NO. 5, MAY 2021

in Algorithm 2 describes our wireload estimation method.
A wireload model is a list of values that represent the
capacitance per unit length of package wires. These values
are calculated from technology settings and package wire
dimensions.

At the end of the codesign steps, as depicted in line 18 of
Algorithm 1, the RDL planner tool generates a TCL script
to implement the package routing and SDC files for all
chiplets specifying wireload on IO pins. In the SDC file,
the capacitance estimated by the WireLoadEst() function is
specified as the wireload of the corresponding pin. With this
strategy, our RDL planner can directly handle one-to-one pin
connections between two chiplets. We prioritize the point-
to-point connection since this is the most commonly used
connection type on the package level. A multipoint connection
can be handled by breaking it down into multiple point-
to-point connections and then applying our strategy. Multiple
chiplets can be handled by grouping the chiplets that are
already interconnected into a single chiplet-like entity and
perform routing between the group and another chiplet.

IV. PHYSICAL DESIGN

The physical design of both chiplets and the package can
be implemented using any commercial chip design environ-
ment that supports hierarchical design flow. We use Cadence
Innovus to perform the hierarchical implementation of the
package and chiplets in our 2.5-D system. We set up the
modified TSMC 65-nm PDK and load the entire system into
the design environment. Chiplets appear as modules in this
design environment. Based on the plan generated by our RDL
planner, we place the chiplets on the package and define their
signal assignments. Using the scripts generated by our RDL
planner, we route the chiplet pins on RDLs. Then, the timing
budget of chiplets and the package are extracted. After this
step, chiplets and the package are separated as hierarchical
subdesigns and can be implemented in parallel in their own
design environments.

A. Hierarchical Implementation
During implementation, each chiplet is treated as a single

2-D design with some extra constraints imposed by the
top-level plan and designed using traditional chip design
techniques. The initial SDC file, which defines the chiplet
context (such as IO delay and output load), is modified to
include the wireload on chiplet pins estimated by our RDL
planner tool. In the top-level planning stage, initial chiplet
floorplans are prepared. This floorplan can be adjusted if
necessary without changing the pin configuration specified
by the top-level plan. After fixing the floorplan, the power
distribution network (PDN) is designed to ensure reliable
power delivery to standard cells and memory macros. Standard
tools are used for standard cell placement, clock network
design, routing, and postrouting optimizations. Finally, filler
cells and metal fills are used to fulfill the density requirement.
Fig. 7(c) (top) shows the Core chiplet, which contains all logic
blocks and 8-KB memory in the lower address range. Fig. 7(c)
(bottom) shows the Mem chiplet, which contains the other
8-KB memory in the upper address range.

Algorithm 2 Signal Assignment & Wireload Estimate

1 Function AssignSignals(Tracks, Nets, Slack):
2 foreach track in Tracks do
3 track.length = calc_path_len(track.path)
4 sorted_tracks = sort_by_length(Tracks)
5 sorted_nets = sort_by_slack(Nets, Slack)
6 set next_track = 0
7 foreach net in sorted_nets do
8 sorted_tracks[next_track].signal = net
9 next_track + = 1

10 return
11

12 Function WireLoadEst(Tracks, WireLoadModel):
13 foreach track in Tracks do
14 cap_per_len = WireLoadModel[track.layer]
15 track.load = track.length × cap_per_len
16 return

The package design can be implemented in parallel with
chiplet designs. However, more accurate and reliable optimiza-
tion of the package can be performed if interface timing mod-
els of chiplets extracted after their implementation are used.
Our RDL planner generates routing scripts for interchiplet
routing at the end of the coplanning step. We utilize these
scripts to finish interchiplet routing. Based on the package
floorplan and interchiplet routing, package external IOs are
placed. Chiplet pins that are not used in interchiplet connec-
tivity are assigned as external connections to package IO pads.
Fig. 7(b) shows the package design of the 2.5-D system that
integrates the chiplets shown in Fig. 7(c).

With routed chiplets and package layouts, they are imported
into the integrated design environment again. To ensure manu-
facturability, DRC is performed on each of the chiplet, and the
package before design assembly. Fig. 7(d) shows a zoomed-in
view of the assembled design, which shows traces from both
chiplets and the package in the unified environment. Holistic
extraction is performed on this assembled design using the
extraction-rule file characterized for the chiplet–package uni-
fied technology. As all chiplets and the package are combined
together in the same environment, all interactions between
chiplets and the package are captured accurately in the
extraction.

B. Holistic Extraction

Holistic extraction can be performed using any commer-
cial extraction tool that supports hierarchical extraction flow.
We use Synopsys StarRC LEF/DEF flow to perform the
holistic extraction. Table II shows the coupling capacitance
extraction result of the final design. For readability, capaci-
tance numbers from M1–M5 are merged. In the traditional
die-by-die approach, it is not possible to accurately capture
the interactions between chiplet and package routing layers.
In our holistic method, these interactions are captured, which
are presented in the last three columns of the table: RDL1,
RDL2, and RDL3. If we notice, there exists sufficient coupling

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



KABIR AND PENG: HOLISTIC CHIPLET–PACKAGE CO-OPTIMIZATION FOR AGILE CUSTOM 2.5-D DESIGN 721

Fig. 7. Design layouts of (a) reference 2-D system, (b) assembled 2.5-D system with chiplet and package layers, (c) designs of Core chiplet (top) and Mem
chiplet (bottom), and (d) zoomed-in view of the assembled design.

between RDL1 of the package and M6 and M7 of chiplets.
Moreover, it is evident from the numbers that the coupling
of RDL1 with M6 is greater than that with M7. As M7 is
the topmost chiplet routing layer, it is expected that the
coupling between RDL1 and M7 should be greater. However,
as the routing on M6 is significantly greater than that on
M7, and routing tracks of RDL1 and M6 run in the parallel
direction, the effective overlap between RDL1 and M6 is
much greater than that with M7. This detailed interaction
can only be captured in a holistic extraction method. The
extraction result can then be utilized to incrementally improve
the system performance, signal integrity, and system reliability.
In Section V, we present a set of design case studies that
reveal the impact of chiplet–package interactions and how the
holistic extraction result can be utilized to iteratively improve
the design.

Table III shows a comparative study between die-by-die and
holistic extraction results. The die-by-die extraction result is
calculated by performing extractions on individual chiplets and
the package separately and then adding capacitance values
of corresponding layers. As seen from Table III, die-by-
die extraction severely overestimates the ground capacitance,
especially on package layers. This overestimation is due to
the absence of chiplet routing layers between the package
layers and the reference ground plane. More alarming errors
are observed in coupling-capacitance. Die-by-die extraction
severely underestimates the coupling capacitance on all layers
as it cannot capture the interactions between chiplets and
the package layers. This large error in parasitic extraction
can cause severe signal integrity issues leading to system
failure. Therefore, holistic consideration of chiplet and pack-
age interactions is a must in high-density 2.5-D packaging
technologies.

One limitation of holistic extraction is that the existing
commercial extraction tools cannot perform holistic extraction
when heterogeneous technologies are involved. However, this
limitation is not inherent to the holistic flow. This limitation
can be overcome by extending the extraction tools to handle
multiple heterogeneous technologies. An intermediate solution
is to perform in-context parasitic extraction per technology and
stitch them together carefully to create the holistic extraction
result [27].

TABLE II

HOLISTIC CAPACITANCE (IN FF) EXTRACTION RESULTS

C. Iterative Optimizations

After design assembly and analyses, if the target perfor-
mance is not achieved and discrepancies between estimated
package parasitics with extraction results are observed, iter-
ative implementation of chiplets can be conducted. If active
packaging material is used, a similar optimization procedure
can be performed on the package layer as well. In the
first iteration of the chiplet design, the package wireload
is a rough estimation based on package wirelength. Thus,
we almost always expect some room for improvement. After
design assembly and holistic extraction, the STA analysis is
performed on the design with the holistic extraction result.
Based on this analysis, new timing contexts are created for
all the chiplets. In the STA analysis, timing paths through
the package are modeled, including the cells within the
driver and receiver chiplets. This makes the cross-boundary
co-optimization between chiplets possible. One limitation of
existing STA tools is that they only consider resistive and
capacitive parasitic elements of the nets. However, package
wires exhibit significant inductive behavior. Though, in this
article, we only consider the capacitive impact of the package
wires, this same methodology can be applied to consider other
elements of the package wire, which affects the overall system
performance.

As accurate parasitic information is available through holis-
tic extraction, it is possible to generate a tighter timing
budget for the next iteration. We use Synopsys PrimeTime
to create the updated timing contexts utilizing its context
characterization feature. We export the updated timing context

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



722 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 11, NO. 5, MAY 2021

TABLE III

COMPARISON OF HOLISTIC VERSUS DBD GROUND (GCAP) AND
COUPLING (CCAP) CAPACITANCE EXTRACTION RESULTS (IN FF)

as an SDC file for each chiplet. This SDC file contains
all the details of the timing contexts of each IO pin of a
chiplet. For output pins, it specifies maximum transition time,
wireload, pin-load, and output delay. For input pins, it specifies
minimum/maximum allowed capacitance, maximum fan-out,
driving cell, and input delay. For all the delay information,
clock latency is also specified. Using these updated timing
contexts, all chiplets are reimplemented and adjusted for the
package overhead. These timing contexts can be used to
perform iterative optimization of the package design as well.
There can be several iterations of assembly, extraction, timing
context creation, and reimplementation until it is no longer
possible to improve the system performance or the target
performance is met. However, with a good estimation in the
first iteration, a second iteration is generally good enough to
meet the best system performance.

V. TWO-WAY PARTITION DESIGN STUDY

We prepared several design cases to study the impact
of chiplet–package interactions on the system. We found
that holistic extraction results can be utilized to significantly
improve system performance. In this section, we present some
of these designs and analysis results.

A. Design Case Variants

1) Case 1: Reference 2-D Design: We design a 2-D imple-
mentation of the microcontroller system as a reference design
using TSMC 65-nm technology with lower seven metal layers.
The gate-level netlist obtained after synthesis and before
preparing chiplet partitions is used in this design. After trying
out several floorplans, we settle with a square floorplan with a
side length of 600 µm, as shown in Fig. 7(a). We performed
PDN, cell placement, clock network design, routing, and
postrouting optimizations using standard chip design tools.
The finished design achieves 400-MHz maximum system
frequency. In Table IV, Case 1 column shows the parameters
of the finished design.

2) Case 2: Context-Free 2.5-D Design: This case is a
context-free single-pass design that resembles the traditional
die-by-die approach. Chiplets and the package are designed
independently without using the context creation step as in our
flow. Though our RDL planner generates the top-level plan,
it does not perform package wireload estimation. However,
we still perform design assembly and holistic extraction to
capture chiplet–package interactions. This design case reveals
the impact of the package on chiplets and the consequent

degradation of the overall system performance. In Table IV,
Case 2 column shows the parameters of this design case.

3) Case 3: Context-Aware Optimized 2.5-D Designs: This
case is designed in our holistic flow and optimized using itera-
tive context creation and reimplementation of chiplets, as dis-
cussed in Section IV-C. We try to include chiplet–package
interactions as much as possible in the design and optimization
steps. As discussed previously, our RDL planner prepares
the top-level plan and calculates package wireload estimation,
which is used in the first iteration of chiplets implementa-
tion. After design assembly and holistic extraction, extracted
parasitics are used to perform STA and create chiplet timing
contexts for the next iteration of chiplets implementation. The
last two columns of Table IV show the parameters of two
different iterations of this design.

B. Holistic Analysis and Optimization

We consider Case 1 2-D implementation as the reference
design. Due to the interchiplet RDL wire overhead, it is
expected that 2.5-D implementations will have worse perfor-
mance. In the Case 2 design, which resembles the die-by-
die design approach, after applying all possible traditional
optimizations, all chiplets achieve 400-MHz operating fre-
quency, the same as the 2-D design. However, the over-
all 2.5-D system can only run at a maximum frequency
of 366 MHz. The slowest paths are between the chiplets
through the package, resulting in a slower clock frequency.
This result reveals that our holistic extraction method can
capture the package impact on the overall system performance.
This package overhead is overlooked in the die-by-die design
approach. As a result, the die-by-die analysis will report
an inaccurate system frequency. Our holistic extraction and
analysis flow can accurately capture the package overhead on
the system performance and report the frequency at which the
system can run reliably.

In the first iteration of the Case 3 design, a predictive
package wireload model is used in chiplet implementation.
Though it is a very rough estimate based on a linear model,
this design achieves an operating frequency of 384 MHz.
Compared to the performance gap of 34 MHz between the 2-D
implementation and the Case 1 2.5-D implementation, this is
an approximately 50% reduction in the performance gap. This
result reveals the importance of considering chiplet–package
interactions, even in the early planning stage.

In the second iteration of the Case 2 design, timing contexts
created using holistic extraction results are imported during
chiplet implementation. These contexts have an accurate pic-
ture of the overall system. Using these contexts, the chiplet
design tools can adjust chiplet designs to compensate for the
delay introduced by package wires. As a result, in the second
iteration, the 2.5-D system achieves a 395-MHz operating
frequency, which is very close to the 2-D system performance.
As the critical path is from the Core chiplet to the Mem
chiplet through the address bus, the size and number of buffers
in the Core chiplet increased, while the redundant buffers
in the Mem chiplet are removed. All these optimizations
are performed by the chip design tools without any special
setting other than the timing contexts created using the holistic

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



KABIR AND PENG: HOLISTIC CHIPLET–PACKAGE CO-OPTIMIZATION FOR AGILE CUSTOM 2.5-D DESIGN 723

TABLE IV

ANALYSIS RESULT COMPARISON OF THE MICROCONTROLLER SYSTEM

extraction result. More iterations are performed afterward, but
there is no significant improvement in system performance.
That is why the second iteration is taken as the final design of
Case 3. This result reveals that, with proper considerations of
the chiplet–package interactions, it is possible to reduce the
interchiplet overhead and optimize the overall 2.5-D system
performance. In this design case, we reduce the performance
gap between the 2-D implementation and the Case 2 2.5-D
system by 85% through our holistic extraction and iterative
optimization flow.

VI. AGILE MULTIWAY DESIGN TECHNIQUES

Though our design flow and planning strategy are illustrated
based on a two-way partition design, it can be easily extended
for multiway partitioned designs. To illustrate a multiway
partitioned system, the application of novel design techniques
enabled by 2.5-D integration, and the design flexibilities
offered by our flow, we discuss a three-way partition imple-
mentation of the microcontroller system.

A. Three-Way Partition Design

In this implementation, the 8-KB Mem chiplet of the
previous 2.5-D system is further divided into two 4-KB Mem
chiplets. Fig. 8 shows the chiplets for this three-way partition
design. This way, now, the 2.5-D system can have three
different flavors with 16-, 12-, and 8-KB memory capacities.
Fig. 9 shows all these flavors of the system. Fig. 9(b) shows the
system with all three chiplets with 16-KB memory. The RDL
plan of this design is prepared in two stages. In the first stage,
only the two 4-KB Mem chiplets are considered. These two
chiplets share 12 connections on the address bus. The RDL
planning tool routes these nets using straight horizontal wires
on RDL1. These wires can be seen in Fig. 9(b) as horizontal
blue wires in the lower half of the package. In the second
stage of RDL planning, these two chiplets are considered as
a single chiplet-like group. For the RDL router, dummy pin
locations are specified on the horizontal RDL1 wires between
the two chiplets. The RDL planning tool routes the connections
between the Core chiplet and this combined chiplet-like group
to finish the interchiplet routing. The address bus is routed on
RDL2 and RDL3 and form T-connections with the RDL1 wires
between the Mem chiplets. Finally, the remaining pin locations
of the Core chiplet are used as external IOs. With this top-level

Fig. 8. Layouts of the chiplets for the three-way partition design study.
(a) Core chiplet. (b) 4 KB Mem chiplet.

RDL plan, chiplets are implemented following our iterative
optimization flow. As seen from the first row of Table V,
the optimized 16-KB system achieves a maximum operating
frequency of 380 MHz.

B. Drop-In Approach

In fan-out wafer-level packaging (FOWLP), a reconstituted
wafer is built using the KGD of the chiplets. In this step,
a chiplet can be deliberately left out from the reconstituted
wafer to design low-cost flavors of a system with limited
capabilities while keeping all optical masks untouched. We call
this the “drop-in” design approach because the whole system
could be created if the missing chiplet is dropped into the
package. In the three-way partitioned design, a 12-KB system
can be designed if the second Mem chiplet is excluded
from the package. This design approach requires zero design
costs but offers the end-users to choose from several options
as per their requirements. Our flow can handle this design
approach. Fig. 9(c) shows the drop-in design with 12-KB
memory. The second Mem chiplet is excluded from the
package, and holistic extraction and analysis are performed
after design assembly. The second row of Table V shows
that, in the absence of the second Mem chiplet, the system
performance improved from 380 to 390 MHz without any
further optimizations on the chiplets.

C. Pay-as-You-Use Approach

This is another approach, similar to the drop-in approach,
to develop several flavors of a 2.5-D system. In this approach,

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



724 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 11, NO. 5, MAY 2021

Fig. 9. Design layouts of (a) core-only system with 8-KB memory, (b) optimized full system with 16-KB memory, (c) 12-KB design using the drop-in
approach, and (d) optimized 12-KB design using pay-as-you-use approach.

each design flavor is customized depending on the usage of
systems components. The penalty paid in the system perfor-
mance and power depends on the use of the system resources.
Fig. 9(d) shows a 12-KB implementation of the three-way
partitioned system designed in this approach.

Unlike the drop-in design, the package routing is modified
to remove redundant package wires related to the second
Mem chiplet. Then, we simply perform another incremental
iteration of our holistic optimization flow, which automatically
adjusts package wire drivers of the chiplets according to
design needs. Since all steps are performed in a standard
ASIC design environment, this process is fully automated
and takes less than an hour, enabling agile design customiza-
tion. As seen from the third row of Table V, the system
performance improved from 390 MHz of the drop-in design to
396 MHz with the reimplementation. Though, in this design
case, it is not a huge performance gain, this illustrates the
flexibility and optimization capability of our flow, which can
be utilized by system designers to quickly generate cus-
tomized flavors of 2.5-D systems and reduce the turn-around
time.

Of course, another flavor of the system can be designed
by removing both the Mem chiplets and keeping the Core
chiplet only in the package. This system is shown in Fig. 9(a).
We perform holistic extraction and analysis on this system.
This system achieves an operating frequency of 400 MHz,
the same as that of the reference 2-D design, demonstrat-
ing no observable delay overhead introduced by package
wires.

VII. SILICON VALIDATION WITH TAPE-OUT

To validate our flow in silicon, we taped out a shared-block
design containing a 2-D system and a 2.5-D implementa-
tion of the microcontroller. We used TSMC 65-nm as the
implementation technology. We modified the top two rout-
ing layers of the chip design PDK to be used as RDLs.
As this chip is designed to be manufactured by mimicking
the attributes of 2.5-D RDLs, several design considerations
are made. The system architecture of the ARM Cortex-
M0 microcontroller is originally designed to be implemented
as a System-on-Chip (SoC) at a target frequency of 100 MHz
in TSMC 65-nm technology. For this mimicked technology

TABLE V

COMPARISON OF THREE-WAY PARTITION DESIGN CASES

Fig. 10. System designs for tape-out. (a) Reference 2-D system.
(b) Assembled 2.5-D system.

stack, we do not have a foundry-provided extraction-rule file.
Moreover, for the shared-IO design and chip testing using
simple logic analyzers, several testing logic are embedded
within the chip. For all these reasons, though the target
frequency is 400 MHz, the taped-out system runs at around
100 MHz.

A. 2-D and 2.5-D System Designs

A reference 2-D system is designed along with a 2.5-D
system for tape-out. Lower six metal layers are used for
designing the 2-D system and for performing the internal
routings of the 2.5-D chiplets. The 2-D system is designed
using traditional chip design flow. The chiplets of the 2.5-D
system are designed in our holistic design and optimization

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



KABIR AND PENG: HOLISTIC CHIPLET–PACKAGE CO-OPTIMIZATION FOR AGILE CUSTOM 2.5-D DESIGN 725

Fig. 11. Final design for tape-out and the fabricated die. (a) Die-level design in Innovus. (b) Combined GDS for tape-out. (c) Microscopic image of the
taped-out die.

flow. In both systems, M5 and M6 are used for designing
the PG ring around the core. The PG rails on M1 and PG
stripes on M6 supply power to the standard cells and macros,
respectively. Because of the shared-block design approach,
only the interchiplet connections in the 2.5-D system are
routed using RDLs. The external IOs of both systems are
placed on M7, next to an IO multiplexing module. Fig. 10(a)
shows the finished 2-D system. Fig. 10(b) shows the assembled
2.5-D system.

B. Shared IO Design

To save the pin area, we use a shared-block approach in
our tape-out design. This also helped us satisfy the minimum
area requirements of the foundry while saving the IO cell
area. The 2.5-D implementation is combined with the 2-D
implementation, as shown in Fig. 11(a). The systems share
the same IO driver cells to communicate with the outside
world. An IO multiplexing module is placed in between the
two systems, which allows either one of the two systems to use
the driver cells to communicate. The die-level power delivery
network is designed on M7. As both systems have their PG
rings on M5 and M6, horizontal M7 stripes are used to connect
these rings with the IO ring around the die. Several stripes
on M7 are used to ensure reliable power delivery to both
systems.

C. Sign-Off Verifications

DRC verifications are performed on chiplet designs and the
assembled system designs. After fixing system-level design
errors, both systems are merged together into the die-level
GDS. Fig. 11(b) shows the combined GDS. To pass the
sign-off verifications of the foundry, we had to make some
adjustments to the final design. For example, to pass the
antenna rule check, some of the wide wires on M8 (RDL1) and
M9 (RDL2) were adjusted to reduce the antenna area. To fulfill
the density requirement, special filler cells and metal fills were
used. After all tests are successfully passed, the design was
sent out for fabrication. Fig. 11(c) shows the microscopic
die-shot of the fabricated die.

Fig. 12. Chip testing waveforms from the logic analyzer.

D. Chip Testing and Flow Validation

Both systems in the fabricated chip are tested using test
vectors generated using a logic analyzer. Among several test
cases, Fig. 12 shows the waveforms of the GPIO countdown
test. In this test, the system reads the GPIO for a top value
and then counts down to 1. At the end of the countdown,
it generates a pulse (Sync Pulse) at a specific pin. The
clock signal, Sync Pulse, and the countdown values on a
bus are shown in Fig. 12. Both systems in the die are tested
individually, and both of them passed all the tests successfully.
This silicon design proves that our holistic flow is fully
compatible with the current ASIC CAD flow and foundry
model. Our agile design approach can make designing custom
2.5-D multichiplet systems as easy as designing 2-D modular
ASICs.

VIII. CONCLUSION

In this article, we present our holistic design, analysis,
and optimization flow for 2.5-D systems. Through several
design case studies, we show that chiplet–package interactions
in high-density integration technologies significantly affect
the overall system performance. The traditional die-by-die
approach is not sufficiently accurate for advanced packaging
solutions. Our holistic extraction flow can accurately capture
these cross-boundary interactions and optimize the system to
reduce the overhead of package wires on system performance.

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



726 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 11, NO. 5, MAY 2021

We reduced the performance gap between a reference 2-D
implementation and a traditional die-by-die 2.5-D implemen-
tation by 85% using our iterative optimization flow. Moreover,
as illustrated using a three-way partitioned system, our flow
supports several agile design approaches that can be exploited
to generate different flavors of a 2.5-D system with almost
zero design cost. These holistic design methodologies offer
designers and application engineer’s flexibility, low-cost cus-
tomization, and performance. The other detailed analysis steps,
such as power integrity, signal integrity, and thermal analyses,
are not performed in this study. Those steps will be included
in the future versions of this flow. Our flow is tested in silicon
and can be utilized to implement 2.5-D systems in commercial
technologies using standard VLSI CAD tools.

REFERENCES

[1] (Mar. 2021). 2.5D Holistic Design Flow. [Online]. Available: https://
e3da.csce.uark.edu/release/2.5D_Design_Flow

[2] C.-C. Hsieh, C.-H. Wu, and D. Yu, “Analysis and comparison of thermal
performance of advanced packaging technologies for state-of-the-art
mobile applications,” in Proc. IEEE Electron. Compon. Technol. Conf.,
May 2016, pp. 1430–1438.

[3] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “2.2 AMD
chiplet architecture for high-performance server and desktop products,”
in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2020,
pp. 44–45.

[4] J. H. Lau et al., “Fan-out wafer-level packaging for heterogeneous
integration,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 8,
no. 9, pp. 1544–1560, Sep. 2018.

[5] S. Dwarakanath et al., “Evaluation of fine-pitch routing capabilities
of advanced dielectric materials for high speed panel-RDL in 2.5 D
interposer and fan-out packages,” in Proc. IEEE Electron. Compon.
Technol. Conf., May 2019, pp. 718–725.

[6] Y. Xie, C. Bao, and A. Srivastava, “Security-aware 2.5D integrated
circuit design flow against hardware IP piracy,” Computer, vol. 50, no. 5,
pp. 62–71, May 2017.

[7] S. Patnaik, M. Ashraf, O. Sinanoglu, and J. Knechtel, “Best of both
worlds: Integration of split manufacturing and camouflaging into a
security-driven CAD flow for 3D ICs,” in Proc. Int. Conf. Comput.-
Aided Design, Nov. 2018, pp. 1–8.

[8] J. H. Lau, “Recent advances and trends in fan-out wafer/panel-
level packaging,” J. Electron. Packag., vol. 141, no. 4,
pp. 040801-1–040801-27, Dec. 2019.

[9] W. Ki et al., “Chip stackable, ultra-thin, high-flexibility 3D FOWLP
(3D SWIFT technology) for hetero-integrated advanced 3D WL-
SiP,” in Proc. IEEE Electron. Compon. Technol. Conf., May 2018,
pp. 580–586.

[10] C.-F. Tseng, C.-S. Liu, C.-H. Wu, and D. Yu, “InFO (wafer level inte-
grated fan-out) technology,” in Proc. IEEE Electron. Compon. Technol.
Conf., May 2016, pp. 1–6.

[11] J. Lin et al., “Scalable chiplet package using fan-out embedded bridge,”
in Proc. IEEE Electron. Compon. Technol. Conf., Jun. 2020, pp. 14–18.

[12] J. Kim et al., “Architecture, chip, and package codesign flow for
interposer-based 2.5-D chiplet integration enabling heterogeneous IP
reuse,” IEEE Trans. Very Large Scale Integr. Syst., vol. 28, no. 11,
pp. 2424–2437, Nov. 2020.

[13] W.-H. Liu, M.-S. Chang, and T.-C. Wang, “Floorplanning and signal
assignment for silicon interposer-based 3D ICs,” in Proc. 51st Annu.
Design Autom. Conf., 2014, pp. 1–6.

[14] D. Yu, “A new integration technology platform: Integrated fan-out wafer-
level-packaging for mobile applications,” in Proc. Symp. VLSI Technol.,
Jun. 2015, pp. T46–T47.

[15] N.-C. Chen et al., “A novel system in package with fan-out WLP for high
speed SERDES application,” in Proc. IEEE Electron. Compon. Technol.
Conf., May 2016, pp. 1495–1501.

[16] H.-P. Pu, H. J. Kuo, C. S. Liu, and D. C. H. Yu, “A novel submicron
polymer re-distribution layer technology for advanced InFO packaging,”
in Proc. IEEE Electron. Compon. Technol. Conf., May 2018, pp. 45–51.

[17] C.-T. Wang et al., “Signal integrity of submicron InFO heterogeneous
integration for high performance computing applications,” in Proc. IEEE
Electron. Compon. Technol. Conf., May 2019, pp. 688–694.

[18] P. Vivet et al., “2.3 A 220GOPS 96-core processor with 6 chiplets
3D-stacked on an active interposer offering 0.6ns/mm latency,
3Tb/s/mm2 inter-chiplet interconnects and 156mW/mm2@ 82%-peak-
efficiency DC-DC converters,” in IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers, Feb. 2020, pp. 46–48.

[19] J. Wang, S. Ma, P. D. S. Manoj, M. Yu, R. Weerasekera, and H. Yu,
“High-speed and low-power 2.5 D I/O circuits for memory-logic-
integration by through-silicon interposer,” in Proc. IEEE Int. 3D Syst.
Integr. Conf., Oct. 2013, pp. 1–4.

[20] D. Xu, H. Huang, N. Yu, and H. Yu, “An energy-efficient 2.5 D through-
silicon interposer I/O with self-adaptive adjustment of output-voltage
swing,” in Proc. Int. Symp. Low Power Electron. Design, Aug. 2014,
pp. 93–98.

[21] M. A. Kabir and Y. Peng, “Chiplet-package co-design for 2.5 D systems
using standard ASIC CAD tools,” in Proc. Asia South Pacific Design
Automat. Conf., Jan. 2020, pp. 351–356.

[22] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
VLSI Des., vol. 11, no. 3, pp. 285–300, Jan. 2000.

[23] J. Cong, S. K. Lim, and C. Wu, “Performance driven multi-level and
multiway partitioning with retiming,” in Proc. Conf. Design Autom.,
2000, pp. 274–279.

[24] T.-C. Lin, C.-C. Chi, and Y.-W. Chang, “Redistribution layer rout-
ing for wafer-level integrated fan-out package-on-packages,” in Proc.
IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 2017, pp. 561–568.

[25] H.-T. Wen, Y.-J. Cai, Y. Hsu, and Y.-W. Chang, “Via-based redistribution
layer routing for InFO packages with irregular pad structures,” in Proc.
ACM/IEEE Design Autom. Conf., Jul. 2020, pp. 1–6.

[26] C.-H. Chiang, F.-Y. Chuang, and Y.-W. Chang, “Unified redistribution
layer routing for 2.5 D IC packages,” in Proc. 25th Asia South Pacific
Design Autom. Conf. (ASP-DAC), Jan. 2020, pp. 331–337.

[27] M. A. Kabir, D. Petranovic, and Y. Peng, “Coupling extraction and
optimization for heterogeneous 2.5 D chiplet-package co-design,” in
Proc. 39th Int. Conf. Comput.-Aided Design, Nov. 2020, pp. 1–8.

MD Arafat Kabir (Graduate Student Member,
IEEE) received the B.Sc. degree in electrical and
electronic engineering (EEE) from the Bangladesh
University of Engineering and Technology (BUET),
Dhaka, Bangladesh in 2017. He is currently pursuing
the Ph.D. degree with the Computer Science and
Computer Engineering Department, University of
Arkansas, Fayetteville, AR, USA.

He studies design methodologies and algorithms
for accurate extraction, analysis, and optimization of
high-performance and high-density 2.5-D systems.

His research interest is in computer-aided design (CAD) tool development
for VLSI.

Yarui Peng (Member, IEEE) received the B.S.
degree from Tsinghua University, Beijing, China,
in 2012, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the Georgia Institute
of Technology, Atlanta, GA, USA, in 2014 and 2016,
respectively.

He is currently an Assistant Professor with
the Computer Science and Computer Engineering
Department, University of Arkansas, Fayetteville,
AR, USA. He studies design methodologies and
optimization algorithms for parasitic extraction, sig-

nal integrity, power integrity, and thermal reliability. He also develops design
automation tools for power electronics to improve performance, reliability,
and productivity. His research interests are computer-aided design, analysis,
and optimization for emerging technologies and multichip packages, such as
2.5-D/3-D ICs and wide bandgap power electronics.

Dr. Peng received the best paper awards at SRC TECHCON 14, ICPT 16,
and EDAPS 17. He is also an NSF CAREER Award Winner in 2021.

Authorized licensed use limited to: University of Arkansas. Downloaded on May 30,2021 at 19:20:08 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


