Cross-Boundary Inductive Timing Optimization
for 2.5D Chiplet-Package Co-Design

MD Arafat Kabir
University of Arkansas
Fayetteville, AR
makabir@uark.edu

Abstract

With the popularity of 2.5D integration, an increasing number of
chiplets are integrated into advanced system-in-package designs.
In such systems, redistribution layer (RDL) wires become longer
and denser, with a growing impact on system performance. How-
ever, RDL inductive impacts in timing analysis are ignored by the
traditional CAD tools. This paper presents our chiplet-package co-
optimization flow, which can capture the RDL inductance impact
on system performance and automatically adjust the IO drivers to
compensate for the inductance overhead. We develop our extraction
and timing analysis tool that models RDL wire inductive timing
impact on 2.5D system performance within +/-1% error. Our study
shows 35% signal paths through RDL violate the timing requirement
because of the inductive impact, and remain undetected through
only RC-based STA.

CCS Concepts

« Hardware — Physical design (EDA); Multi-chip modules;
Modeling and parameter extraction; Package-level interconnect.

Keywords

2.5D, Chiplet-Package Co-Optimization, Holistic Design, Inductance
Modeling, Timing Context

ACM Reference Format:

MD Arafat Kabir, Dusan Petranovic, and Yarui Peng. 2021. Cross-Boundary
Inductive Timing Optimization for 2.5D Chiplet-Package Co-Design. In
Proceedings of the Great Lakes Symposium on VLSI 2021 (GLSVLSI °21), June
22-25, 2021, Virtual Event, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3453688.3461505

1 Introduction

2.5D integration technology is gaining popularity in increasing
device density and performance at the system level. It offers hetero-
geneous integration and energy-efficient high-bandwidth inter-die
communication channels. The industry is putting a lot of effort
in developing advanced packaging nodes. The dimensions of in-
terconnects on redistribution layers (RDL) have already reached
the sub-micrometer range [1]. Due to chipletization and the use of
Known-Good-Dies (KGD), it is now feasible to design a very large

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI 21, June 22-25, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8393-6/21/06...$15.00

https://doi.org/10.1145/3453688.3461505

Dusan Petranovic Yarui Peng
Mentor Graphics University of Arkansas
Fremont, CA Fayetteville, AR
dusan_petranovic@mentor.com yrpeng@uark.edu
[C] Chip Design Tool

[] Our In-House Tool
["] Design Information

/_Cell Timing Library /

Partitioning

Chip-Package Floorplanning and
Package Wireload Estimation

¥
‘ Timing Budget Extraction and

Hierarchical Sub-Design Formation Design Data RC Parasitics /
¥ ¥ 3
Package Chiplet / [Chiplet / Scaling for Inductance
Plan Plan Plan /
)) ¥ / Parse Design Data
RDL Placement & Chiplet | / and RC Parasitics
Routing Routing Contexs | /

/ Calculate RLC equivalent;
Delay Factors

Design Assemble
Holistic Extraction
Scaling for Inductance

Analysis and
Context Creation

Calculate Ctot,eq and

Parasitics Scaling Factors
Scale RDL Net Parasitics
_ to Simulate RLC Delay

RLC Equivalent Parasitics

Final Package / Final Chiplets /

(a) Holistic Co-Optimization Flow (b) Inductance Impact Modeling
Figure 1: Holistic co-optimization flow with RDL inductance

impact on timing

2.5D system containing several chiplets. In large systems containing
tens of chiplets, long RDL wires are unavoidable. These long RDL
wires are going to exhibit significant inductive behavior.

Traditionally, chip-scale interconnects are modeled using resis-
tive and capacitive (RC) elements. Several previous studies have
discussed the impact of inductive (L) elements of interconnects at
the high-frequency range. It is observable that the signal oscilla-
tions in the RDL wires are significantly underestimated using only
RC elements [2]. The study [3] also shows that properties of the
driver also affect the oscillatory behavior of the voltage waveform.
It is essential to take into account the inductive behaviors of the
RDL wires to ensure system reliability and signal integrity of a
high-performance 2.5D system with long interconnects.

Due to the complexity of chip routing, many inductance extrac-
tion methods proposed for package design are not able to handle
dense and fine chip wires [4]. Recently, some studies are performed
on novel design techniques for 2.5D system design and optimiza-
tions. The co-design methodology proposed in [5] tries to design
and optimize a 2.5D system in a unified design environment. Though
this extraction methodology is useful to optimize the system timing
considering the impact of capacitive coupling between chiplets and
the package, it cannot consider inductive effects of RDL wires on
the timing. The design methodology proposed in [6] implements
a plug-and-play design approach, however, inductance effects are
not considered in the timing optimization steps.

In this paper, we present our chiplet-package co-optimization
flow for 2.5D systems, which takes into account the inductive effects

https://doi.org/10.1145/3453688.3461505
https://doi.org/10.1145/3453688.3461505
https://doi.org/10.1145/3453688.3461505

of RDL wires on the system performance. Our flow can automat-
ically co-optimize the IO drivers and receivers between chiplets
taking into account the timing overhead introduced by the inductive
behavior of the RDL wires. Through SPICE simulation, we develop
our own RLC interconnect delay model to estimate the path delays
through RDL interconnects. We develop our in-house tools that
work hand-in-hand with the existing commercial ASIC CAD tools
to incorporate the inductance timing overhead in design, analysis,
and optimization steps.

Through the work presented in this paper, we claim the following
contributions: (1) A new co-optimization flow for designing 2.5D
systems taking into account the inductance effects of RDL wires
on timing; (2) An RLC delay models for IO drivers based on RDL
interconnect properties; (3) A new tool that works alongside the ex-
isting ASIC CAD tools and incorporates the inductance effects into
the design flow; (4) Comparative study between implementations
of a real micro-controller system designed with and without RDL
wires inductance considerations.

To the best of our knowledge, there exists no other tool and
design flow that implements chiplet-package co-optimization of
2.5D systems while taking into account the inductance overhead of
RDL wires on the system performance.

2 RLC Delay Modeling

As discussed in the previous studies [2, 3, 7], at high frequencies,
the inductive effects of interconnects become significant on tim-
ing. Before a system can be optimized for the inductance overhead,
the RLC interconnect delay need to be modeled accurately. The
study presented in [7] modeled the global interconnect delay of
0.25 pm CMOS technology taking into account the inductive effects.
Though the properties of 2.5D RDL and 0.25 pm CMOS global wires
are different, we utilize the delay modeling methodology to develop
our own RLC delay model for the RDL wire drivers. We use Nan-
gate45nm PDK as our standard cell library and develop our RDL
wire driver RLC delay model for this technology.

2.1 Interconnect Delay Study using SPICE

Compared to the chiplet internal wires, the RDL wires are wider and
so have smaller resistance and larger capacitance per unit length. In
our experimental design, we use RDL wires with width/spacing of
10 pm/10 pm. For the purpose of comparative study through SPICE
simulation, we model the RDL wires as having resistance 0.05 Q/um
and capacitance 0.068 fF/um. These values are taken from some
previous studies, and the inductance is modeled using the partial
inductance of the wire. We calculate the partial inductance using
the following equation [8]:

l 0.9054
L= ';l In(Vk2 +1+k) - k‘2+1+T+0.25 (1)
/4

For the partial self inductance, k = I/r, where | is the length of
the RDL wire and r is the thickness of the wire. Referring to the
TSMC InFO UHD technology [1], we use a thickness of 1 pm for
the RDL wire. At 2 GHz, the skin depth of copper is approximately
1.45 pm, which is why we can ignore it in this simulation. Fig. 2
shows the circuit used to perform SPICE simulation. A pulse source
with 2 GHz frequency and rise and fall times of 10 ps is applied
to the gate of an inverter, which drives the gate of the RDL wire
driver cell. This driver cell drives a receiver gate connected to the

other end of the RDL wire. In a real design, the drivers and receivers
are supposed to be within chiplets and connected to the RDL wires
through IO pads. We are ignoring the IO pads for this simulation.
In multiple runs of the simulation, the RDL interconnect length
is changed, and the simulation is performed for the RLC model.
For each RDL wirelength, simulation is also performed for the RC
model, where the same resistance and capacitance values as in the
RLC model are used, but the inductance is not included.

As highlighted by the delay arc in Fig. 2(a), the 50% delay from the
gate of the driver cell to the gate of the receiver cell is measured for
both RC and RLC interconnect model simulations. Fig. 2(b) shows
the plotted simulation data for INV_X16 of the Nangate45nm cell
library. As evident from the figure, as the inductance increases with
the wirelength, the RC model of the interconnect cannot accurately
estimate the propagation delay. Fig. 2(c) shows the relative error
of the RC interconnect model w.r.t the RLC model delay measured
through SPICE simulation. As observed from this figure, the RC
model can underestimate the propagation delay by approximately
30%. This result is consistent with previous studies [3, 7], confirm-
ing it is essential to include the inductance impact on timing in
the design, analysis, and optimization steps of a system connected
through RDL wires.

2.2 Our RLC Delay Model

To estimate the delay through RDL wires of a 2.5D system, we
develop our own delay model using SPICE simulations. On RDLs
between the chiplets, point-to-point connections are more common.
For that reason, we are use a transmission line-based RLC delay
model, as presented by Ismail and Friedman in [7]. Based on their
work, using the transmission line model, the delay #,4 is a function
of three variables, {, Rr, and Cr, as shown in (4).

Ryr Cr Ry |G
Rr=—, Ctr = =, Gine = —1| — 2
T R, T Cy glme 2 It ()
Rr+Cr+RrCT +0.5
$ = ine 3
V1+Cr
t;)d(é(, RT: CT)
tpd = ()

They derived their final model for #,4 using only one variable, ¢,
for the condition 0 < Ry, Cr < 1. However, in our experimental
setup, using Nangate45nm with InFO-like integration technology,
this condition is not met. Additionally, to develop a more accurate
delay model for each driver cell, we select two variables, namely
{line and Ct. The selection is based on the fact that, as seen from
(2) to (4), tpd is dependent on R, R;, Cr, Cy, L;. For a given driver,
R;r is fixed and considering (j;,. and Cr includes the rest of the
variables.

scalingFactor = k + a{;’ine + b{lzine +cine + d{lzmeCT (5)
RLC Delay = scalingFactor X RC Delay (6)

For a given driver, using {j;,. and Ct, we calculate a factor using (5).
As shown in (6), this factor is multiplied with the RC delay to
estimate the equivalent RLC delay for that driver. A multiplication
factor is estimated because it is essential for modeling the RLC
delay using RC parasitics as discussed in detail in the next section.
Parameters of (5) are obtained by fitting the SPICE simulation data
for each driver. Table 1 shows the fitted parameters for some cells

0 SPICE RLC
| | — SPICERC
Chiplet RDL | Chiplet go{ |------ Model RLC
| | n
: 560
T 3 > g
| o O 40
Driver Tteeeoo-- - | Receiver
| Measured | 20
Delay Arc

4%-

0 1000

(a) Circuit for SPICE Simulation

' 2000 3000
Wire Length (um)
(b) Measured delay from SPICE simulation

>
) ‘T‘j 0% I~ — T ———
d D
O 4%
= RC Model
X -89%-
=-12%;
S-16%
w
©-20%:
2
T -24%
[0]
X _28%:
T T T 1 T T T T T T T T T 1
4000 5000 0 1000 2000 3000 4000 5000

Wire Length (um)
(c) Model accuracy comparison

Figure 2: SPICE simulation and validation of our models

of the Nangate45nm cell library. Fig. 2(b) shows the delay estimated
by our fitted model for the same cell side-by-side with the simulated
RC and RLC models. As seen from Fig. 2(c), where the RC model
underestimates the propagation delay by 30% for long wires, our
fitted model estimates the delay with an error of only +/-1%. Using
this RLC model, in the next section, we develop our in-house tool,
which can incorporate the RDL wire inductance impact on overall
system performance in a holistic design flow, to iteratively optimize
the chiplets to compensate for the overhead.

3 Holistic Co-Optimization Flow

In the current industry trend, 2.5D systems are designed in a die-by-
die approach. However, in advanced packaging technologies like
InFO UHD, the gap between chiplets and the package is so small
that the interactions between them significantly affect the overall
system. To ensure maximum performance and reliability, a holistic
analysis of the system is essential to capture the interactions among
all the components.

2.5D integration technology offers a myriad of features and de-
sign opportunities. Though large design houses can benefit them-
selves from these features, designing a multi-chiplet system is a chal-
lenge for small design houses due to limitations of their resources
and existing CAD tools. Some designs, like Internet of Things (IoT)
devices, are intrinsically small in area and power budget. Having
a high-performance IO system adds too much overhead to such
a system when implemented as a multi-chiplet system utilizing
2.5D integration technology. This can be solved by implementing
a highly-customized IO interface between chiplets simplified into
a few standard cells [9]. However, as these cells are not designed
for driving long RDL wires, parasitics and static timing analysis
(STA) must be performed very carefully to avoid design failures.
To overcome these challenges, a CAD flow is essential that can
automatically optimize these low-cost IO systems making holistic
considerations of the entire 2.5D system. In this section, we present
our holistic iterative co-design flow, which uses all standard libraries
to design custom pin drivers taking into account the inductance
overhead on overall system performance.

3.1 Overall Flow

Fig. 1 demonstrates the steps of our holistic iterative co-optimization
flow. The gate-level netlist is synthesized from the RTL description
of the entire 2.5D system. This gate-level netlist is then partitioned

Table 1: Model parameters for selected Nangate45nm cells

INV BUF
Parameter | v, v, x5 | X1 X4 X6
a 20023 0132 3312 | 0.004 -0.036 1931
b 0.047 -0.242 -5783 | 0.007 0.000 -3.788
¢ 20013 0156 23804 | -0.006 0.048 2.085
d 20.008 -0.136 -1.009 | -0.007 -0.076 -0.561
k 1003 1.001 0961 | 1.004 1.008 0.938

using a partition tool, which takes into account the impact of pack-
age wires on the timing while exploring the partition solutions.
After the system is partitioned into chiplets, we perform the co-
planning of chiplets and the package together in a unified design
environment. A unified PDK is designed using similar settings as
presented in Table 1 of [5] to set up the unified environment. As
a result, design information can be exchanged between chiplets
and the package while performing timing budget extraction and
hierarchical sub-design formation of the chiplets and the package.
Using an RDL planning tool, the package RC loads are calculated
based on the wirelength of the RDL nets. These estimated loads
are appended with the hierarchical contexts, created by the top-
level design tool, for each chiplets. After this step, chiplets and the
package sub-designs can be implemented independently in parallel
using the top-level constraints.

The traditional 2D chip design flow is followed to implement
the chiplets. However, as the top-level constraints are always in
effect during the design and optimization steps, the chiplet design
tool takes into account the holistic considerations imposed in the
top-level planning step. After finishing the chiplet designs, they
are individually checked for design rule violations (DRC). If all the
chiplets are violation-free, they are again assembled together in
the “Design Assemble" step in the unified design environment for
holistic extraction.

Though previous works [5] have shown that the holistic extrac-
tion process can capture the impact of the package RC parasitics,
no effort has been made to consider the inductive impact of the
RDL wires. In the “Scaling for Inductance” step of our flow, we uti-
lize our in-house tool to modify the holistically-extracted parasitic
netlist to include the inductance impact on the timing paths going
through RDL wires. The inner workings of this tool are discussed in
detail in Section 3.2. The tool adjusts the capacitances on the RDL
nets in the parasitic netlist such that the STA and context creation

tool calculates the RLC equivalent delay on the timing arcs going
between chiplets through RDL wires. This adjusted parasitic netlist
is used to perform timing analysis and create timing contexts for all
chiplets using standard STA tools. As a result, the timing context
created for each chiplet contains the timing overhead caused not
only by the RC elements, but also the inductive element of the RDL
wires.

These timing contexts of the chiplets are used to re-implement
the chiplets in their own design environments, but with more accu-
rate estimates of the timing constraints. As a result, during timing
optimization steps, the chip design tool makes adjustments within
chiplets to compensate for the timing overhead caused by the RDL
interconnects. This iterative optimization can be performed until
the design goal is met or no more improvement can be achieved. Fi-
nally, the finished chiplets and the package designs can be analyzed
and checked for the sign-off verifications.

3.2 Parasitics Scaling for Inductance

Though holistic extraction using existing industry-standard tools
can accurately capture the capacitive coupling between chiplets and
the package, it cannot capture the inductive impact of package wires.
As discussed in Section 2, RDL wire inductance can severely affect
the overall system performance. Existing commercial STA tools do
not support inductance during timing analysis. Although standard
parasitics description formats like SPEF support inductance, indus-
try standard tools like Synopsys PrimeTime simply ignore those
elements. That is why we design our own tool that can utilize an
RLC delay model and adjust the parasitic information for existing
STA tools in a way such that the timing contexts created for itera-
tive optimization will take into account the timing overhead caused
by the RDL inductance.

Fig. 1(b) shows the workflow of our parasitic adjustment tool.
It reads the design data and parasitics netlist extracted through
the holistic extraction process. The design data is parsed for RDL
nets, their wirelength, driver, and receiver cells within the chiplet.
This information is necessary to estimate the RLC equivalent delay
using the model discussed in the previous section. The holistically-
extracted parasitics contain the RC netlist of the entire system, both
chiplets, and package. This netlist is parsed for the RC netlist of the
RDL wires. The tool also reads in the timing calculations performed
by the analysis and context creation tool using the RC parasitics.
All of this information is used to calculate the scaling factor, using
equation (5) for driver cells and their RDL interconnects.

The delay calculation result extracted from the STA tool is used
to calculate the total RC delay, from the driver input pin in one
chiplet to the receiver input pin in another chiplet, by adding the
driver cell-timing arc and the RDL wire net-timing arc. Using the
parasitics and design information parsed in the previous step, the
RDL interconnect parameters, {j;,, and Cr, are calculated. Then,
using these interconnect parameters in equation (5), along with
the fitted parameters for the driver, scalingFactor is computed. The
RC delay, calculated using the STA tool report, is multiplied by
this scalingFactor to estimate the RLC delay of the timing arc as
shown in Fig 2(a). This estimated RLC delay is used to adjust the RC
parasitics netlist and to allow the context creation tool to calculate
RLC delay instead of RC delay for the paths running between the
chiplets through RDL.

Standard STA tools calculate a path delay as a summation of
timing arcs: gate delay from an input pin to its output pin is defined
as the cell-arc, and the net delay from an output pin to the input pin
is defined as the net-arc. The cell-arc is calculated using a look-up
table (LUT) described in the cell timing library, and the net-arc is
calculated using the Elmore-delay model on the RC tree of a net.
The cell-arc depends on the input transition time (t,) and the total
capacitance (Cto¢) at the output pin. The way Elmore-delay works
on a RC tree, keeping the resistances of the RC tree constant, if
a common factor scales all the capacitances in the tree, the total
net-delay will be scaled by the same factor.

RLC = cell delay + net delay

7
= LUT(Crot,eq, tr) + scalePar x (RC net delay) @

Where,
Ctor : Total Capacitance in the Parasitic RC network,
t, : Input transition time of the driver cell,
Ctot,eq : Total equivalent capacitance in the parasitic network
required to simulate the estimated RLC delay, and
LUT : Cell timing library look-up table
scalePar : Ciot,eq/Ctot

The delay estimated by our model for a specific RDL interconnect,
using equations (5)-(6), is the summation of the cell-arc of the driver
gate and the net-arc of the RDL wire. Based on the aforementioned
relationships, we develop the equation (7), which can be used to look
up the total equivalent capacitance (Ctot,eq) from the cell timing
library. That capacitance, when used in the RC parasitics netlist, will
force the STA tool to compute the RLC delays for the timing arc from
the driver input to the receiver input pins of the RDL interconnects.
As a result, the timing contexts for all chiplets created by the tool
will take into consideration the timing overhead caused by the RDL
wire inductance, along with the RC elements.

To adjust the RC parasitic netlist, a scaling factor, scalePar, is
calculated for each RDL net. The factor scalePar is defined as the
ratio of the RLC equivalent total capacitance (C;ot,eq) and the total
capacitance (Ctor) on the RC tree of the extracted parasitics netlist.
This scalePar factor is used to multiply all the capacitances attached
to the RDL net RC tree in the parasitic netlist. This scaled parasitic
netlist is exported to be used by the STA tool for timing analysis and
chiplet timing-context creation. As only the RDL net capacitances
are scaled, all the delays calculated by the STA tool using this scaled
parasitics netlist, from RDL wire driver input to the receiver input,
are the equivalent RLC delay, although the chiplet internal nets
are still calculated using the RC delay models. Due to the iterative
nature of our design flow, as shown in Fig. 1, the chiplet design tools
then adjust the RDL wire drivers and receiver, as well as the internal
gates of the chiplets to compensate for the timing overhead caused
by the RDL interconnect. Thus, our flow achieves the co-design and
optimization goals of the overall 2.5D system.

Due to the modular design of our tool, the RLC interconnect
delay model is separate from the rest of the parts of the tool. A more
accurate and physics-based model can replace this delay model to
create a more accurate and general tool. Combined with existing
ASIC CAD tools, they implement holistic co-optimization flows
with accurate inductance considerations on timing.

1!

Nl

(a) Assembled 2.5D system with chiplets and the package together

(b) Core-Chiplet (c) Memory Chiplet
Figure 3: Physical design layouts of chiplets and the package

4 Experimental Study
4.1 Design Setup

To study our flow on a real design, we select an ARM Cortex-M0
based microcontroller to implement as a two-chiplet 2.5D system
using InFO-like integration technology. The Nangate45nm PDK is
modified to create a unified PDK for planning and designing the
package and chiplets together using similar settings as in Table 1
of [5]. The PDK contains seven metal layers for chiplet internal
routing and three RDLs for package routing. The system consists of
16KB of memory and several peripheral devices. The 16KB memory
system is divided into four banks of 4KB, where each bank consists
of four 1IKB SRAM macro compiled using OpenRAM [10] memory
compiler. The area being dominated by the memory macros, such
granular design of the memory system offers flexibility in partition
and floorplanning steps.

Fig. 3(a) shows the package floorplan and RDL routing of the ex-
perimental system. This system, being a small one, can be designed
using very short package wires. We place the chiplets 1000 pm apart
on the package, as it is typical for the chiplets to be connected with
RDL wires in 1 cm range. As our chiplets are small, we use only
the minimum spacing. We choose such a small system because it is
easy to control the design parameters for the experimental setup.
However, in a more practical 2.5D system with tens of chiplets, RDL
wires extended over multiple millimeters would be very common.
There are 100 signals running between the two chiplets in this de-
sign, which have wirelength varying in the range 1000-2500 pm. In
our SPICE simulation, we covered this wirelength range and fitted
the driver RLC delay parameters based on the simulation results.

Following the holistic iterative co-optimization flow discussed in
the previous section, the entire system is implemented at a target
system frequency of 300 MHz. Fig. 3(b)-(c) shows the finished physi-
cal design of the two chiplets. Two different designs are prepared for
comparative study. In one design, the exact flow of Fig. 1 is followed

to perform iterative optimization through holistic extraction and
parasitics netlist scaling for inductance consideration. In the other
design, all the steps of this flow are followed except for the “Scaling
for Inductance” step. The original parasitics extracted through holis-
tic extraction is directly used for timing analysis, context creation,
and iterative optimizations. This way, we can pinpoint the exact
optimizations performed by the chip design tool accounting for the
inductance impact on the overall system performance. Both of the
designs required two iterations to reach their best performance.

4.2 Analysis and Results

In this work, we name the system with RDL inductance consider-
ations using scaled parasitics as the RLC-Design, and the system
without RDL inductance considerations as the RC-Design. Fig. 4
shows the histogram of the timing analysis result of the paths
going through the RDL wires in the RC-Design. The paths with
total delay varying within 0.05 ns are binned together. The red
bars and green bars show the analysis result obtained using the
holistically-extracted parasitics and RLC equivalent scaled para-
sitics, respectively. As seen from the figure, without consideration
of the inductive overhead on the timing path, the STA tool reports
zero violating paths at the target frequency of 300 MHz. However,
when STA is performed on the same design taking into account the
inductive overhead, approximately 35% of the paths through the
package violate the timing requirement. The worst violating paths
miss the timing requirement by 0.15 ns. In a high-performance GHz
design, that means a violation by 20-30% of the clock period. With-
out careful considerations of these timing overhead caused by the
inductive behavior of the RDL wires, the system will fail to run at
its nominal speed, even though the sign-off verification report says
the system met the timing requirement.

After every iteration of the chiplet physical design, as shown in
Fig 1, finished chiplets are assembled with the package for holistic
extraction, scaling for inductance, and context creation. Using the
chiplet timing context created after the previous iteration means
the chiplet physical design tool obtains a more accurate view of
the overall system in every subsequent iteration. As a result, it
can fine-tune the chiplet designs to suit the system requirements.
In our experimental designs, we observe a significant difference
in the cell sizes of timing paths going through RDL wires. Fig. 5
shows the distribution of cell size of the drivers and receivers of
the signals going through RDL wires. The red and green bars show
the cell counts of the final implementations of the RC-Design and
the RLC-Design, respectively. As observed from the driver size
distribution, the chiplet physical design tool has inserted larger
drivers in the RLC-Design to compensate for the delay overhead
caused by the inductive effect of RDL wires. Unaware of this delay
overhead, the RC-Design uses drivers as small as X3, thus failing to
meet the timing requirement. As the only difference between the
two implementations is the consideration of RDL wire inductance,
this shift in the distribution of the driver size clearly highlights that
the chiplet design tool successfully optimizes the delay impact of
the inductance of RDL wires.

Significant changes are also observed on the receiver side of RDL
wires. The size distribution of the receiver cells in Fig. 5 shows that
many of the larger receiver cells in the RC-Design are replaced
by smaller cells in the RLC-Design. For example, although there

A

RC Delay Model
30] L__| RLC Delay Model

15
10
5_

— T T
305 310 315 320 325 3.30
Delay (ns)
Figure 4: Timing path count per 0.05 ns delay bin through
RDL

Path Count

ln

335 340 345

607 601
[without Inductance Impact -
501 [] with Inductance Impact 501
.. 401 — 401
c c
3 =3
S8 301 S 301
B o]
O 201 O 201
101 101
o o =1

X1 X2 X3 X4 X8 X16 X32
Receiver Size

X1 X2" X3 X4 X8 X16X32
Driver Size
Figure 5: Package inductance impact on cell size distribution

are many X4 and some X32 receivers in the RC-Design, they are
replaced by smaller X2 cells in the RLC-Design. This change is
performed by the chiplet design tool to reduce the capacitive load
on the chiplet pin, which reduces the overall delay on the affected
paths.

When using even a large cell in the driving chiplet is not enough
to meet the timing, the chiplet design tool takes drastic measures
on the receiver side, which is briefly highlighted in Table 2. Though,
in general, the receivers are downsized to reduce the load at the
input pins, it can be noticed in Fig. 5 that the X1 receiver count
decreased and the X2 receiver count increased in the RLC-design.
These changes are due to the adjustments performed as in Path-1
and Path-2 of Table 2. In Path-1, four buffer cells of different sizes in
the RC-Design are replaced by only one buffer of size X2. In Path-2
of RC-Design, different logic cells of size X1 are directly connected
to the chiplet input pin putting a large capacitive load on it. In the
optimization steps of the RLC-Design, a single X1 buffer is placed
as the receiver that subsequently drives the logic cells within the
receiver chiplet. That is, a group of smaller X1 receivers connected
to a single input pin is replaced by a single X1 or X2 receiver,
thus decreasing overall X1 receiver count or increasing X2 receiver
count. In some cases, as in Path-3, where inserting a buffer as the
receiver does not help in timing improvement, it simply reduced
the logic gate cell size. Note that both chiplets are implemented
independently in parallel in their own design environment. This
cross-boundary co-optimization between chiplets, to compensate
for the inductive delay overhead, is achieved by using chiplet timing
contexts created using the RLC equivalent parasitics generated by
our in-house tool.

5 Conclusions and Future Work

This paper presents a holistic chiplet-package co-optimization flow
and our in-house extraction and timing analysis tools. Our method

Table 2: Changes in receivers between RC and RLC Designs

Design Path-1 Path-2 Path-3
BUF X4 | AOI21 X1
BUF X1 | NAND4 X1
RC BUF_X8 XOR2_X1 AOI22_X4
BUF_X2 BUF_X1
RLC BUF_X2 BUF_X1 AOI22_X2

takes into account the delay overhead caused by the inductance and
RC elements of the RDL wires. We developed our RLC delay model
and characterized them for the Nangate45nm library driver cells
with less than 1% error. Using this delay model, we prepare an exper-
imental design of an ARM Cortex-M0 based microcontroller system
and implement it with and without the inductance consideration for
a comparative study on a real system. Our study shows that, when
using RC model without inductance consideration of RDL wires,
approximately 35% of the signal paths through RDLs violate the
timing requirement but remain undetected. Through the use of RLC
equivalent parasitics and iterative optimization, our flow can auto-
matically co-optimize the drivers and receivers, in different chiplets,
connected to the same RDL wire keeping the chiplet physical design
process parallel and independent. Our parasitics adjustment tool
enables the inductance delay overhead consideration in the existing
STA tools and can be further extended to accommodate all RCLM
elements in future work.

Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant No. 1755981. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

References

[1] H.Pu, H. J. Kuo, C. S. Liu, and D. C. H. Yu, “A Novel Submicron Polymer Re-
Distribution Layer Technology for Advanced InFO Packaging,” in IEEE Electronic
Components and Technology Conference, May 2018, pp. 45-51.

Y. Peng, D. Petranovic, and S. K. Lim, “Chip/Package Co-Analysis and Inductance
Extraction for Fan-Out Wafer-Level-Packaging,” in IEEE Conference on Electrical
Performance of Electronic Packaging and Systems, Oct. 2017, pp. 1-3.

[3] A. Shebaita, D. Petranovic, and Y. Ismail, “Including Inductance in Static Timing
Analysis,” in International Conference on Computer-Aided Design, Nov. 2007, pp.
686-691.

[4] A.C. Yucel, L. P. Georgakis, A. G. Polimeridis et al., “VoxHenry: FFT-Accelerated
Inductance Extraction for Voxelized Geometries,” IEEE Transactions on Microwave
Theory and Techniques, vol. 66, no. 4, pp. 1723-1735, 2018.

[5] M. A. Kabir, D. Petranovic, and Y. Peng, “Extraction and Optimization for Het-
erogeneous 2.5D Chiplet-Package Co-Design,” in International Conference on
Computer-Aided Design, Nov. 2020, pp. 1-8.

[6] J.Kim, G. Murali, H. Park et al., “Architecture, Chip, and Package Codesign Flow
for Interposer-Based 2.5-D Chiplet Integration Enabling Heterogeneous IP Reuse,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 28, no. 11, pp.
2424-2437, 2020.

[7] Y.1 Ismail and E. G. Friedman, “Effects of Inductance on the Propagation Delay
and Repeater Insertion in VLSI Circuits,” [EEE Transactions on Very Large Scale
Integration Systems, vol. 8, no. 2, pp. 195-206, 2000.

[8] H. A. Aebischer and B. Aebischer, “Improved Formulae for the Inductance of
Straight Wires,” Advanced Electromagnetics, vol. 3, no. 1, pp. 31-43, 2014.

[9] M. Lee, A. Singh, H. M. Torun et al., “Automated I/O Library Generation for
Interposer-Based System-in-Package Integration of Multiple Heterogeneous Dies,”
IEEE Transactions on Components and Packaging and Manufacturing Technology,
vol. 10, no. 1, pp. 111-122, 2020.

[10] M.R. Guthaus, J. E. Stine, S. Ataei et al., “OpenRAM: An Open-source Memory
Compiler,” in International Conference on Computer-Aided Design, Nov 2016, pp.
93:1-93:6.

[2

	Abstract
	1 Introduction
	2 RLC Delay Modeling
	2.1 Interconnect Delay Study using SPICE
	2.2 Our RLC Delay Model

	3 Holistic Co-Optimization Flow
	3.1 Overall Flow
	3.2 Parasitics Scaling for Inductance

	4 Experimental Study
	4.1 Design Setup
	4.2 Analysis and Results

	5 Conclusions and Future Work
	Acknowledgments
	References

