
Hierarchical Layout Synthesis and Optimization Framework

for High-Density Power Module Design Automation

Imam Al Razia, Quang Leb, H. Alan Mantoothb, Yarui Penga

a Computer Science and Computer Engineering Department, b Electrical Engineering Department
University of Arkansas, Fayetteville, AR

ialrazi@uark.edu, yrpeng@uark.edu

Abstract—Multi-chip power module (MCPM) layout design automation
has become an emerging research field in the power electronics society.
MCPM physical design is currently a trial-and-error procedure that
heavily relies on the designers’ experience to produce a reliable solution.
To push the boundary of energy efficiency and power density, novel
packaging technologies are emerging with increasing design complexity.
As this manual design process becomes the bottleneck in design pro-
ductivity, the power electronics industry is calling for more intelligence
in design CAD tools, especially for advanced packaging solutions with
stacked substrates. This paper presents a physical design, synthesis, and
optimization framework for 2D, 2.5D, and 3D power modules. Generic,
scalable, and efficient physical design algorithms are implemented with
optimization metaheuristics to solve the hierarchical layout synthesis
problem. Corner stitching data structure and hierarchical constraint
graph evaluation have been customized to better align with power
electronics design considerations. A complete layout synthesis process
is demonstrated for both 2D and 3D power module examples. Further,
electro-thermal design optimization is carried out on a sample 3D MCPM
layout using both exhaustive and evolutionary search methods. Our
algorithm can generate 937 3D layouts in 56 s, resulting in 10 layouts on
the Pareto-front. In addition, our optimized 3D layouts can achieve 1.3
nH loop inductance with 38 °C temperature rise and 836 mm2 footprint
area, compared to 2D layouts with 8.5 nH, 99 °C, and 2000 mm2.

Keywords—PowerSynth, 2D/2.5D/3D Power Module, Layout Optimiza-
tion, Physical Design Automation

I. INTRODUCTION

With the advent of wide bandgap (WBG) power semiconductor

devices (i.e., SiC, GaN), multi-chip power module performance

has been improved significantly [1]. Recent advances in the power

electronics industry have enabled power conversion design with

enhanced efficiency, compact physical structure, higher reliability [2].

Therefore, the traditional, iterative design approach is unable to

satisfy the ever-growing demands for optimized power modules with

high power density. To reduce engineering time and cost, the industry

is looking for electronic design automation (EDA) tools. In the

meantime, researchers are shifting their concentration to develop

advanced algorithms for emerging packaging technologies [3].

Researchers from both analog/mixed-signal and power electronics

societies have been adapting the design automation methodologies

from VLSI as the EDA tools for digital IC design are highly matured

compared to the others [4]. The similarity between VLSI and analog

computer-aided design (CAD) flow has led a large group of re-

searchers towards developing different CAD tools for analog/mixed-

signal layout design automation to address critical challenges like

handling device parameterization, constraint generation, maintaining

symmetrical placement and routing, etc. [4–7]. Unlike analog and
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Fig. 1: Cross sections of MCPM structures: (a) 2D half-bridge, (b) 2.5D
full-bridge, (c) 3D half-bridge, and (d) full-bridge power module circuit.

digital CAD flow, Power-CAD [8] requires simultaneous analysis of

thermal, electrical, and mechanical parameters to design an optimal

layout. Therefore, layout compaction is not always the best approach

for power modules to ensure reliable operation. Recent works on

power module layout optimization have adapted some of the VLSI

concepts to introduce automated design flow. The sequence pair

representation technique has been used in [9] for representing and

optimizing placement of the components in a power module layout.

A 1D binary string is used to optimize routing paths. Though this

approach has been able to generate solutions automatically, a simpli-

fied representation of components leads to inefficiency with handling

complex geometry. In [10], a matrix-based methodology is used in

the MCPM layout generation tool called PowerSynth to generate

layout solutions during optimization. This methodology leads to

iterative DRC-checking, limited solution space, and long run time. To

overcome the limitations with the matrix-based methodology, a more

generic, efficient, and scalable approach based on corner stitching

data structure with a hierarchical constraint graph methodology has

been implemented by replacing the matrix-based layout engine [11].

This approach has successfully demonstrated a 2.5D power module

layout optimization. To show the concept of 3D layout design, the

connection handling algorithms are demonstrated in [12]. Though

the methodology has been proven to be beneficial for optimizing

3D MCPM layouts, it cannot optimize wire bondless 3D geometry.

This type of geometry handling requires an arbitrary depth of fixed

constraint handling and honoring constraints that are shared across

different layers. Also, rather than using any optimization algorithm,

exhaustive searching through randomization has been performed to
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Fig. 2: Power electronics design automation framework architecture

find the tradeoff between electrical and thermal performances.

To address these limitations, an updated hierarchical, generic, and

scalable framework for 2D, 2.5D, 3D MCPM layout optimization

has been presented in this paper. The definitions of three different

layouts within this framework are as follows. 2D layout refers to

a single device layer, as shown in Fig. 1(a). A full-bridge MCPM

circuit consisting of two half-bridge circuits is shown in Fig. 1(d).

Here, Fig. 1(b) represents a 2.5D layout, which is defined by multiple

routing but a single device layer on the same substrate. Finally,

Fig. 1(c) shows a 3D half-bridge module that consists of multiple

devices and multiple routing layers stacked vertically. Due to the 3D

stacking, the electrical performance has been improved, but thermal

management has become a challenge. Double-sided cooling is one

solution for face-to-face stacking of the devices. However, for face-

to-back stacking (shown in Fig. 1(c)), it requires at least four layers to

form a half-bridge module with double-sided cooling, which increases

the fabrication cost and complexity. To reduce fabrication complexity

and cost, back-to-back stacking can be performed to create a half-

bridge module with embedded heat sink/micro-cooler water channels

between two DBCs [13]. Since different layout architectures are

possible in 3D configurations, the design tool must handle all these

architectures. To the best of the authors’ knowledge, no existing tool

can optimize all these types of high-density MCPM layouts.

In this paper, our key contributions are: (1) A physical design,

synthesis, and optimization framework for 2D, 2.5D, and 3D power

modules; (2) Generic, scalable, and efficient physical design al-

gorithms for layout generation; (3) Non-dominated sorting genetic

algorithm (NSGAII) [14] implementation to solve the hierarchical

layout synthesis problem. The rest of the paper is organized as

follows. Section II briefly introduces the tool architecture. Section

III represents layout solution generation methodology along with the

optimization framework. Section IV demonstrates the tool capabilities

with a sample 3D MCPM layout optimization case study. Finally,

Section V concludes the paper and discusses the upcoming work.

II. LAYOUT SYNTHESIS AND OPTIMIZATION FRAMEWORK

Over the past decade, MCPM layout synthesis and optimization

tools have been evolved by adding new underline methodologies,

features, application programming interfaces (APIs), performance

evaluation models, etc. The most updated architecture of Power-

Synth [10] is shown in Fig. 2. Among all different parts of the

proposed architecture, most features in each step of the design

flow are implemented with a few ongoing. Different versions of
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Fig. 3: (a) Balanced 2.5D solution layout from the tool, (b) fabricated
layout for measurement.

PowerSynth release packages can be found in [15]. A brief overview

of the current status of the architecture implementation is described

here.

A. Data Input

The current version of the tool has a built-in manufacturer design

kit (MDK) defining components, material properties, and dimensions

for power devices, substrates, connectors, heat spreaders, wire bonds,

and leads. It requires a layer stack file describing the 3D structure of

the module to perform thermal performance evaluation. Typically a

power module stacks a baseplate, substrate (copper/ceramic/copper),

substrate-attach, die-attach, and devices, etc. into a compact footprint.

This tool takes a layout geometry description script and circuit

netlist as inputs for geometry and netlist information. A set of

minimum constraints is also required to generate manufacturable

layout solutions.

B. Layout Synthesis

The input geometry structure is stored as a hierarchical corner-

stitched tree [11]. For this tree, a set of horizontal and vertical con-

straint graphs is generated from each node (corner-stitched plane) by

using the minimum constraint values, where edge weights represent

the constraint values and corner-stitched tile coordinates represent the

vertices. To generate new layout solutions, these edge weights are

manipulated. This constraint-aware methodology ensures the DRC-

clean solution generation. Currently, for connectivity checking (LVS),

the tool is dependent on user input. As long as the initial input layout

is LVS-clean, all the solutions will follow that as the constraint graphs

are mapped from the initial layout.

C. Layout Evaluation

Since power module performance depends on electrical, thermal,

and mechanical aspects simultaneously, a legitimate tradeoff among

these aspects is obvious to obtain an optimum solution. Therefore,

off-the-shelf physics-based or finite element methods are not always

suitable for iterative optimization as the runtime is quite large. For

faster convergence, reduced-order, hardware-validated electrical, and

thermal models are developed aiming at high speed with acceptable

accuracy [10]. The 3D module requires more careful modeling to

handle mutual coupling among different components. Research is

ongoing to extend electrical models to 3D layouts. However, multi-

level APIs have been developed inside the tool to leverage the existing

electrical, thermal, mechanical models from other research groups or

companies. For example, in this work, FastHenry [16] from MIT is

used for loop inductance extraction and ParaPower [17] from Army

Research Lab for static thermal evaluation.

D. Multi-Objective Optimization

High electrical parasitics can result in higher switching loss,

voltage overshoots, and potentially signal integrity issues at high
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Fig. 4: High-level workflow using the built-in layout engine

switching frequencies. Likewise, bad thermal performance can lead

to reliability issues of the whole system. Therefore, electrical par-

asitics and thermal performance are key factors of power module

performance evaluation, and a cost function is defined consider-

ing both electrical and thermal parameters. Several categories of

optimization algorithms are considered, including evolutionary al-

gorithms, stochastic algorithms, and gradient-based algorithms. A

genetic algorithm is selected in this work, in addition to the built-in

randomization algorithm. Other types of optimization algorithms such

as Machine learning and Neural Network Models are actively under

research. The output of the optimizer is a Pareto-front solution set.

The user can choose solutions and perform post-layout optimization

and further customization, such as filleting sharp corners to reduce

partial discharge threats.

E. Design Export and Simulation

This tool has a solution browser to browse each generated solution

and export netlist and 3D structures to commercial tools like ANSYS-

Q3D, SolidWorks. The extracted netlist can be back-annotated and

compared with the input. APIs are available to perform the export

function automatically.

F. Experimental Validation

PowerSynth optimization result has been validated through phys-

ical measurement for 2D/2.5D layouts. Electro-thermal optimization

is performed on a 2.5D layout. The optimized solution from the

solution space, and the corresponding fabricated layout are shown

in Fig. 3(a), (b), respectively. Power loop inductance, and maximum

junction temperature for this module are reported as 8.54 nH, and

398.28 K, respectively by PowerSynth. These results are found within

10% accuracy compared to the measurements [11].

III. METHODOLOGY

To generate layout solutions, the tool takes the initial layout,

layer stack, and design constraints as input. The input information is

processed through the hierarchical corner stitching data structure and

constraint graph evaluation algorithms. An optimization algorithm

is used to rank the solutions based on the electrical and thermal

performance so that the Pareto-optimal solution set can be reported.

A high-level workflow of the tool is shown in Fig. 4.

A. Input Layout

The layout engine of the tool requires a hierarchical input geometry

script describing the input layout from the user. Combining with

layer stack information (e.g., layer id, dimensions, type, etc.), the

parser makes the input geometry compatible with the hierarchical

corner stitching data structure. A sample 3D layout structure and

the corresponding input script details are shown in Fig. 5, and

Fig. 6, respectively. The wire bondless 3D MCPM structure (shown

in Fig. 5(a)) consists of three direct bonded copper (DBC) substrates
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Fig. 5: (a) 3D structure of a wire bondless half-bridge module, (b) 2D
layouts of each layer

(one is a through via connected), where there are four routing layers

(L1-L4) and two device layers (single device per switching position).

Each layer’s 2D geometry is shown in Fig. 5(b). In L1, the high-

side device’s drain, DC+ terminal are connected. L2 contains the

gate and source connections of the high-side device, the terminal

for gate signal, and a landing pad of the via. L3 has the low-side

device’s drain, the OUT terminal, and another via landing pad. In

L4, the DC- terminal, terminal for low-side gate signal, source, and

gate signal pads are present. Fig. 6(a) shows the tree structure of

the complete layout. The abstract and physical (the dotted rectangle)

parts are separated in the illustration. The physical part is a one-to-

one mapping of the 2D layouts shown in Fig. 5(b). Here, T, D, L,

V represents trace, device, lead, via, respectively. The physical part

is used to create the layout geometry script shown in Fig. 6(b). The

abstract part saves the hierarchical information for constraint graphs,

which is described in the following section. The sample geometry

description script is created from the hierarchical tree representation.

The first line denotes the layer name (used to map in the layer stack

information) and the routing direction. The rest of the lines until the

next layer name and direction describes the geometry information

about each component of the same layer. The components insertion

is performed hierarchically in a group-wise fashion. All connected

components of the same hierarchy are in the same group. Description

of a new group starts with a ‘+’ character while ‘-’ character denotes

the continuation of the group. To declare a trace (routing component),

six fields are required: name, type (power/signal), bottom-left corner’s

x, y coordinate, width, length. Thickness is defined in the layer

stack information and is used for electrical and thermal performance

models. Each ‘tab’ is inserted to denote the depth of the hierarchy in

the tree. Each connector (lead, via) or active component (device) is

declared by 4 or 5 fields. These are name, type, bottom-left corner’s x,

y coordinate, and orientation. In this example, the default orientation

is R0. However, other orientations are defined by R90, R180, R270.

Dimensions of these components are taken from the MDK as these

have always fixed dimensions. To start a layout optimization using the

framework, the user needs to draft the script based on the hierarchical

manner, as shown in the example.

B. Input Processing

The parsed input geometry is used to create a hierarchical corner-

stitched tree structure. Each node in the tree is a corner-stitched plane.

For each plane, constraint graphs are created using the minimum

constraint values provided by the user. A brief description of the

data structure and constraint graph creation is described below.

1) Hierarchical Corner Stitching Data Structure: The basic corner

stitching data structure [18] is a planar one and does not allow

tile overlapping. However, for power module layout representation,

overlapping of tiles needs to be allowed. Therefore, a hierarchical

tree structure is maintained to store the geometry information. In
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Fig. 6: (a) Tree structure of the 3D layout shown in Fig. 5 (color mapped), (b) layout geometry description script for the selected region in (a).

this tree structure, each layer of the 3D structure is started with

the empty substrate as the parent node. In this node, all tiles form

various groups that can be parent nodes for the next level. Since

corner stitching data structure performs splitting, merging operations

while inserting a tile, the non-split version of a component can be

found in its parent node. For example, for the tree structure shown

in Fig. 6(a), T1 is the child of the L1 substrate and at the same time

parent for the device (D1) and lead (L1). The non-split version of T1

is stored in the substrate node and the device, lead is inserted on T1

in the second hierarchical level, which splits T1 but saves the non-

split version of D1 and L1. Therefore, in each node of the tree, two

types of tiles can be found: background and foreground. Background

tiles are from parent components, while foreground tiles correspond

to the newly inserted child components. Differentiation of foreground

and background enables the tool to find design constraints properly.

Two types of trees are maintained for each structure: Horizontal

Corner-Stitched (HCS) and Vertical Corner-Stitched (VCS). All tiles

are horizontally maximized in HCS, while vertically maximized in

VCS. This elegant data structure is customized for power module

layout representation for two reasons: (a) The tile insertion operations

have linear time complexity, and (b) design constraints can be easily

extracted and mapped into the constraint graphs.

2) Constraint Graph Creation: For each node in the corner-

stitched tree, two constraint graphs (CGs) are created: Horizontal

Constraint Graph (HCG) and Vertical Constraint Graph (VCG), which

maintain relative locations among components. The constraints are

found from the corner-stitched planes (HCS and VCS). Each edge

in the graph corresponds to a tile in the corner-stitched plane. Thus

the whole layout is mapped into HCG and VCG. However, there are

some extra nodes in the constraint graph tree structure to ensure DRC-

clean solution generation, which is called abstract nodes, as they do

not have corresponding corner stitched planes. From Fig. 6(a), the top

four nodes (outside the dotted outline) are abstract nodes. These nodes

have only HCG and VCG. The interfacing layer nodes are created to

handle the constraints which are shared among the layers connected

with the same vias (i.e., the via-type source and gate connections of

the device). For example, in the sample layout shown in Fig. 5(a),

L1 and L2 layers are sharing the same device through the gate and

source connections. Similarly, L3 and L4 layers have another shared

device with source and gate connections. Therefore, two interfacing

layers are created for two pairs of device layers. The parent node of

these interfacing layers has the structure outline and via locations.

This node is referred to as the sub-root node as it is the immediate

child of the root node. The root node has only the structure outline

coordinates. Since the abstract layers are only available in constraint

graphs, these layers’ HCG and VCG vertices and edges are derived

from the physical layers’ HCG and VCG. The current implementation

restricts all layers that need to have the exact size and be perfectly

aligned. However, the methodology can be easily extended to consider

any offset among different layers.

Since two types of graph data structures are used in this framework

to distinguish between the tree structure and the constraint graph

structure, two terminologies are used: node and vertex. Here, a node

refers to the hierarchical tree while a vertex the constraint graph.

In each constraint graph, there may be two types of edges: (a) self

edges (default type), which are generated from the corner-stitched

tile, (b) propagated edges, which are propagated from the child node’s

constraint graph. These edges can be of two types: (a) flexible edges,

which have both the source and the sink as independent vertices, (b)

rigid edges, which have a dependent vertex as the sink. Four types

of vertices exist in each graph: (a) source vertex with only outgoing

edges, (b) sink vertex with only incoming edges, (c) independent

vertex that has a fixed minimum location but no maximum location,

and (d) dependent vertex that has a fixed distance to an independent

vertex. All these concepts are illustrated in the sample VCGs in Fig. 8,

implementing the layout hierarchy in Fig. 7. In this hierarchy, the

device (L1: Node 3) is a leaf node in the L1 sub-tree, and a trace

(T1) with the via-type source connection (L2: Node 3) and another

trace (T2) with the via-type gate connection (L2: Node 2) makes two

leaf nodes in the L2 sub-tree. For a simpler illustration, the leads and

through via have not been considered. Since Node 2 and Node 3 of

the L2 sub-tree have the same configuration, they have similar CGs

with different vertex coordinates. The bottom graph shows the initial

VCG generated by mapping the constraints from the corresponding

corner-stitched planes. Here, E3 (device to via enclosure), LV (length

of the via), and LD (length of the device) are considered as fixed

constraints provided by the user and are potential rigid edges. Other

constraints S3 (spacing between vias), E4 (trace to via enclosure) are

non-fixed constraints. To trim the graph, the constraint validation and

graph reduction algorithm (shown in Algorithm 1) is applied, and the

resultant graph (Final VCG) of L1: Node 3 and L2: Node (2,3) is

shown in Fig. 8(b), and (c), respectively. Algorithm 1 first identifies

all vertices as candidate dependent based on the user constraints. A

vertex is selected as a dependent candidate, if it is a sink of a rigid

edge. Now, the stack is used to process each candidate by validating

the user constraints. If any fixed constraint is valid, the dependent

vertex associated with it is marked as a removable candidate as the



Algorithm 1: Constraint validation and graph reduction

Input : node CG, user constraints

Output: trimmed CG

1 select candidate vertices and edges for removal

2 push all candidate vertices into a stack

3 while stack is not empty do
4 current vertex (vi) = stack.pop()

5 determine the reference vertex (vr)

6 redirect all incoming rigid edges to vr

7 if edge(vr, vi) is the Longest Path(vr, vi) then
8 Edge redirection and constraint validation(CG, vi, vr)

9 else
10 return no solution found

11 update the stack based on the CG
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Fig. 7: Sub-tree structure of interfacing layer 1 in the Fig. 6(a)

location of this vertex can be instantaneously determined using the

location of the corresponding reference vertex. Before marking a

vertex as a removable candidate, all the incoming and outgoing edges

need to be re-directed with respect to the reference vertex, which is

performed by Algorithm 2. This algorithm checks if all incoming

and outgoing edges can be referenced to or from the reference vertex

of the dependent vertex with valid constraints. Upon satisfying the

constraints and ensuring no positive cycle, all the edges are referred

to the reference vertex by adding new edges, and the old edges are

removed from the graph. After applying this algorithm, new rigid

edges can be appeared and need to be processed. Therefore, the stack

is updated in each iteration, and the process stops once all dependent

vertices are processed. The time complexity of the process is linear

with the number of dependent vertices. In Fig. 8(a) and (b), the

backward edge is a negative weight, which ensures no positive cycle

appears in the graph. After applying the algorithm, upon satisfying

the criteria of rigid edge, all the incoming and outgoing edges are

re-directed with respect to the corresponding reference vertex. Now,

all the dependent vertices can be removed from the graph to reduce

the graph size and improve the time complexity.

C. Hierarchical Constraint Propagation

To ensure children’s constraints are compatible with the parent, we

perform constraint propagation from the leaf nodes towards the root

node. For each pair of shared vertices between parent and child, the

longest path is propagated. The basic algorithm can be found in the

previous works. Though that algorithm is for 2D/2.5D layouts, the

hierarchical propagation concept is the same. The additional step that

Algorithm 2: Edge redirection and constraint validation

Input : CG, vi (dependent vertex), vr (reference vertex)

Output: updated CG

1 f = constraint(vr,vi)

2 foreach non-fixed incoming edge do
3 vj = edge.source; e = edge.constraint

4 if vj is a successor of vr then
5 g = Longest Path(vr,vj); weight = e-f

6 if weight==g then
7 add edge(vr,vj,weight,rigid)

8 else if weight<g then
9 add edge(vj,vr,weight,flexible)

10 else
11 return no solution found

12 if vj is a predecessor of vr then
13 h = Longest Path(vj,vr); weight = max(h,e-f)

14 add edge(vj,vr,weight,flexible)

15 remove the incoming edge

16 foreach outgoing edge do
17 vj = edge.sink; e = edge.constraint; weight = f+e

18 if vj is a predecessor of vr then
19 h = Longest Path(vj,vr)

20 if weight+h==0 then
21 add edge(vr,vj,abs(weight),rigid)

22 else
23 add edge(vr,vj,max(h,weight),flexible)

24 else
25 add edge(vr,vj,weight,flexible)

26 remove the outgoing edge

has been added in this work is vertex propagation. While propagating

a fixed constraint, its reference vertex needs to be propagated as well.

For example, in Fig. 7, there was initially no device footprint in the

L1: Node 2. However, since the vertices from via have a dependency

on the device vertex, it is propagated along with the vertices of vias

from the child (L1:Node 2) to the parent (L1:Node 1) and upwards

(interfacing layer 1). After propagating all necessary constraints and

vertices throughout the sub-tree, the initial VCG of the interfacing

layer is shown in Fig. 8 (a). Here, E2 (trace to device enclosure),

S1 (trace to trace spacing), and E1 (substrate to trace enclosure) are

propagated from the other intermediate nodes in the tree hierarchy.

For the propagated edges in the initial VCG of the interfacing layer,

each edge weight has the corresponding source layer id with it.

E1 does not have the id as it can be found in both layers. Upon

propagation, there are rigid edges, but the vertices are not dependent

yet in the initial VCG. Therefore, the constraint validation and graph

reduction algorithm (shown in Algorithm 1) has been applied to

get the modified graph (shown at the top). Once all the necessary

constraints are propagated to the root node, the graphs are ready for

evaluation and layout generation.

D. Layout Generation and Optimization

1) Layout Generation: For generating layout solutions, the HCGs

and VCGs are evaluated using the longest path algorithm. The layout

generation workflow can be operated in three modes. To maximize

the power density, a minim-sized solution can be generated by using

the minimum constraints only. In this Mode 0, the floorplan size is

determined from the root node’s longest distance between source and

sink vertices. To explore large variations in the solution layouts, the

variable floorplan sizes layout generation approach can be pursued

in Mode 1. In this mode, the edge weights of the root nodes are
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Fig. 8: Bottom-up constraint propagation for the structure shown in Fig. 7:
(a) VCG of the interfacing layer, and (b) VCG of L1: Node 3 (left), L2
(Node 2, 3) (right).

Algorithm 3: Layout generation flow

Input : HCG, VCG, Layout hierarchy, User constraints

Output: Locations of the graph vertices for solution layout

1 Evaluate the root node using the longest path algorithm

2 while preorder travesal(Layout hierarchy) do
3 propagate vertex locations from the parent

4 while there are remaining edges do
5 trim the graph and remove redundant vertex & edges

6 partition the graph into independent subgraphs

7 foreach subgraph do
8 Evaluate locations(subgraph)

varied arbitrarily within a range, where the minimum constraint is the

lower bound and the upper bound can be determined by the standard

deviation provided from the user or some multiples of the minimum

constraint value. So, the larger the standard deviation, the larger the

variation can be generated in the layouts. Since power modules are

used in power converters, in most cases, the user has a pre-defined

floorplan size, for which the module layout needs to be optimized.

Therefore, to support fixed floorplan size module optimization, the

algorithms need to run in Mode 2, where the root node’s source and

sink vertex locations are defined by the user. If the floorplan size is

larger or equal to the minimum floorplan size, then the methodology

can generate an arbitrary number of layout solutions by randomizing

the edge weights within the imposed limits due to the fixed size. The

overall workflow is shown in Algorithm 3.

2) Layout Optimization Flow: The generated solutions are evalu-

ated using the performance models. Optimization capability has been

demonstrated using a 3D wire bondless module. In this work, both the

native randomization and non-dominated sorting genetic algorithm

(NSGAII) [14] have been used to perform electro-thermal optimiza-

tion. Randomization is the built-in solution generation methodology

for the tool, which exhaustively searches the solution space and can

generate an arbitrary number of solutions. In randomization, both

uniform distribution and truncated normal distribution functions can

be used to generate new solutions. The genetic algorithm workflow

Algorithm 4: Evaluate locations

Input : CG

Output: Locations for the vertices

1 find the longest path

2 select the location evaluation candidate vertices

3 push all the candidates to a stack

4 make list of sources and sinks

5 while stack is not empty do
6 current vertex (v) = stack.pop()

7 min locations = longest path of v from each source

8 max locations = longest path of each sink from v

9 low = max(min locations); up = min(max locations)

10 max limit = ((up-low)/length(stack))+low

11 determine location of v = randomization(low,max limit)

12 append current vertex to the sources and sinks list

Preorder traversal 
in hierarchy tree

Concatenate longest 
path weightsInitial design string

Split the string by 
longest paths

Perform weighted 
randomization

Generate new 
solution

Evaluate objective 
functionNSGAII OptimizationGenerate new

design string

Reached max 
generation?

No Yes Export solutions 
and Pareto-front

Fig. 9: NSGAII implementation workflow

is summarized in Fig. 9 with user-tunable configurations. Since

randomization is the key to the layout generation workflow, for each

longest path, the extra room is distributed among the edges according

to the design string generated by the optimizer. From a study reported

in [11], for 2D/2.5D layouts, the genetic algorithm can reach the

Pareto-front faster than the randomization method. However, with a

longer runtime, randomization can potentially find better solutions

than the genetic algorithm. Both methods are used in this work to

study the 3D layout optimization strategy.

IV. RESULTS

To demonstrate the capability of the tool, three sets of solutions are

generated. The tool has generic algorithms to generate 2D, 2.5D, 3D

layout solutions. Minimum-sized solutions are generated for three

sample cases (one of each kind). The solution layouts are shown

in Fig. 10. From the results, it is clear that the 3D module has a

much smaller footprint compared to a 2D and 2.5D module. With

the same number of devices, the power loop inductance is found

only 2.11 nH for the 3D module, whereas the 2D/2.5D module gives

a loop inductance of 7.12 nH. Due to a smaller footprint, the thermal

results could be worse in the 3D module. However, this face-to-back

configuration allows double-sided cooling, which gives better thermal

measurement for the 3D one compared to the 2D.

To optimize a 3D MCPM, a wire bondless module with three

devices per switching position is selected. The minimum solution has

a floorplan size of 20.7 mm × 12.2 mm, and loop inductance, the

temperature rise is 1.53 nH, 62.24 °C, respectively. For optimization,

five floorplan sizes are selected: 26 mm × 18 mm, 29 mm × 19

mm, 32 mm × 20 mm, 35 mm × 21 mm, 38 mm × 22 mm. For
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Fig. 11: Solution space with five different floorplan sizes (85 solu-
tions/size): (a) NSGAII, (b) randomization

TABLE I: Runtime comparison between NSGAII vs Randomization

Algorithm Total layouts On Pareto-front
Approximate runtime (min)
Generation Evaluation

NSGAII 937 148 25 206
Randomization 937 10 1 212

each floorplan size, 85 solutions are generated in the first iteration

using both NSGAII, and randomization, and the solution spaces

are shown in Fig. 11. Both of the solution spaces are showing a

similar trend. Randomization is exploring more diversified solutions,

including the similar quality solutions found by NSGAII. To find

the Pareto-optimal solution space, NSGAII has been run for 100

generations and generated about 940 solutions for each size. The

same number of solutions are generated by randomization, and the

solution space is shown in Fig. 12(a). Runtime is computed using

an Intel Xeon Silver 4210 2x10C@2.2G processor. The comparison

result between NSGAII and randomization for a sample floorplan

size solution set is shown in Table I. Though NSGAII cannot find

better solutions, the number of solutions on the Pareto-front is higher

than randomization, which is reasonable as randomization has no

guidance towards optimization. The layout generation runtime can

be improved by optimizing the implementation and paralleling the

evaluation. Fig. 12(b) shows the Pareto-front comparison between the

two methods. From the comparison, it can be seen that randomization

has found better-optimized solutions for this layout compared to

the NSGAII. This is because the 3D layout has a smaller variation

compared to 2D with a reduced footprint. Therefore, all suitable

optimization algorithms should find similar solution space. However,

randomization searches exhaustively in the solution space and can

find better solutions for some cases. Three selected solutions on the

Pareto-front are shown in Fig. 13. The performance values for the

layouts are shown in Table II. From the solution layouts, it is clear that

layout A has the smallest footprint that gives the lowest inductance

with the highest temperature rise. On the other hand, layout C has

TABLE II: Performance metrics for three layouts on Pareto-front

Layout ID
Inductance Temperature Rise Size

(nH) (°C) (mm × mm)
A 1.37 46.99 26 × 18
B 1.37 37.96 38 × 22
C 2.54 36.72 38 × 22
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Fig. 12: (a) Randomization solution space with five floorplan sizes (945
solutions/size), (b) Pareto-front comparison with three selected layouts

the highest footprint with the devices spread out more evenly, which

provides a higher inductance and lower temperature rise. In between

two extreme cases, layout B has a balanced performance for both

electrical and thermal.

 A

 B

 C

L1 L2 L3 L4

DC+ DC-Via Via

5 mm

DC+ DC-
Via Via
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Fig. 13: Three selected layouts on the Pareto-front shown in Fig. 12

V. CONCLUSIONS AND FUTURE WORKS

We propose a power module layout synthesis and optimization

framework promising for design automation in the power electronics

industry. The capability to optimize all 2D/2.5D/3D power modules

reaches state-of-the-art. The generic, scalable, and efficient algorithms

can adapt to most existing packaging technologies in the industry.

The current version relies on external tools and models, resulting

in a relatively long runtime. They will be replaced by the built-in

reduced-order models for accelerated runtime in future work, and

our methodology and optimized modules will be hardware-validated

through physical measurements.
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