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Abstract—A constraint-aware layout engine is developed for Pow-
erSynth to explore heterogeneous power module layout synthesis and
optimization considering reliability. For this purpose, the corner stitching
data structure with constraint graph evaluation is extended for power
module layouts with generic, scalable, and efficient algorithms to place
and route heterogeneous components including active devices, sensors,
controllers, and other passive components. Unlike VLSI, in power
modules design, layout compaction is not the optimum target because of
thermal and reliability issues associated with high voltage and current.
Therefore, in this layout engine, both design and reliability constraints
are honored while generating layout solutions by evaluating constraint
graphs and randomizing edge weights. Compared with existing work,
the proposed algorithms can process a broader range of layouts with
a higher geometrical complexity within a few minutes. In addition, the
produced layouts are both reliable and design-rule-check (DRC)-clean,
which improves both time complexity and layout quality.

Keywords—PowerSynth, corner stitch, constraint graph, Multi-Chip
Power Module, algorithms, layout optimization.

I. INTRODUCTION

Recently, inspired from VLSI, power module layout design au-
tomation is gaining attention as power module layout has been
deemed key to realizing the maximum performance for wide band
gap (WBG) technologies (i.e., GaN and SiC). The existing design
procedures are performed manually using iteration-based sequential
design steps that result in local optimum solutions rather than the
global one [1, 2]. Recent studies try to extend VLSI placement-and-
routing (P&R) concepts into power module layout design automa-
tion [3–5]. However, there are some fundamental differences [3] in the
design procedure between VLSI and power module layouts because
of thermal and reliability issues.

The sequence pair method is used in [3] for representing and
optimizing placement of components in a power module layout.
Routing is simplified by combining signal and power traces with
devices and considering the entire device as a single component. This
simplification leads to reduced flexibility and may give worse results
compared to designs with detailed routing. For routing optimization,
a 1-D binary string is produced randomly by applying a uniform
binary distribution. This randomization approach leads to iteratively
checking electrical connectivity and is a potentially time-consuming
step.

PowerSynth [5] is a Multi-Chip Power Module (MCPM) layout
synthesis tool that exploits multi-objective optimization to generate
optimized layout solutions automatically. To begin with, the tool takes
layer stack information including layout dimensions, material prop-
erties and simple system specification parameters such as ambient
temperature and switching frequency, etc. This information serves for
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the reduced order models characterization process for both electrical
and thermal as described in [5, 6]. These models provide a high
prediction accuracy with an acceptable computational time during
the optimization process. Along with the layer stack information,
an abstract layout representation namely symbolic layout is used
as the input. This symbolic layout consists of lines and points
representing traces, devices or lead connections, whose coordinates
are normalized. Then, each trace or component is stamped into a
matrix representation to effectively update the trace dimension and
component locations during the optimization process. However, this
layout generation method does not consider any design constraints
during the layout generation phase. Therefore, once a layout is
generated, it has to go through an iterative DRC checking process. In
some complicated layout cases more than 90% layout solutions are
discarded due to DRC failures. Also, this DRC step could be time-
consuming on 3-D layouts with many heterogeneous components and
limits geometric configurations due to many built-in assumptions.
To address these limitations, a new constraint-aware layout engine
is required to handle higher geometrical complexity with generic
approach.

Both studies mentioned above use the genetic algorithm for finding
optimal solution sets using different evaluation metrics. In [3],
parasitic inductance, resistance, and footprint area are considered as
layout performance metrics, whereas in [5], electrical (parasitic induc-
tance, resistance, capacitance) and thermal (average and maximum
temperature) parameters are used. Both methodologies consider only
homogeneous power systems consisting of only power transistors and
diodes rather than heterogeneous layouts with components such as
passive elements (capacitor), gate drivers, and EMI filters. To explore
a larger solution space with enhanced flexibility, these heterogeneous
components should also be optimized with power modules simulta-
neously. Therefore, to the best of our knowledge, there is no existing
work on automatic power module layout optimization considering
heterogeneous components, design constraints, and reliability con-
straints with a scalable and generic algorithm.

Furthermore, recent improvements in wide band gap device tech-
nologies have led to higher-voltage-rating applications ranging from
2.5 kV to 15 kV [7–10]. While these improvements allow more
compact layouts and a higher power density, in recent studies more
attention is drawn to reliability metrics such as creep/strike and partial
discharge (PD) [11–14]. One of the solutions to improve reliability
is applying insulating materials with high dielectric strength between
traces [14]. While this method prevents PD activity, a lot of care
is taken to choose an appropriate material for good thermal and
mechanical reliability. Another solution is simply increasing the gaps
between traces to ensure a safe PD distance. For instance, in [9],
a 10 kV 120 A SiC Half-bridge module has been designed based
on a commercial Si IGBT module footprint to ensure a reliable trace
distance. Similarly, a study on a 15 kV bridge rectifier [10] has shown
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Fig. 1. (a) Horizontal corner-stitched plane, (b) vertical corner-stitched plane,
and (c) a corner stitch tile.

that the pad spacing has to be greater than 3 mm to ensure a safe
partial discharge threshold. Based on these design practices, both
design and reliability constraint-aware algorithms are proposed in
this paper for generating DRC-clean layout solutions with voltage-
and-current-dependent reliability constraints.

In this paper, reliability-aware physical design algorithms are
proposed to generate a broader range of heterogeneous layouts with a
higher geometrical complexity. For this purpose, the corner stitching
data structure [15] with the constraint graph [16] evaluation method-
ology has been extended for power module layouts. All common
technology constraints such as minimum width, minimum spacing,
minimum enclosure, minimum extension and user-defined reliability
constraints such as voltage-dependent spacing and current-dependent
trace width are preserved in constraint graphs. From corner-stitched
layouts, all of these constraints are mapped into constraint graphs to
maintain horizontal and vertical correlations among components. The
graphs are evaluated using the longest path algorithm that is widely
used in physical design algorithms in VLSI [17]. These solutions are
further optimized using cost functions including electrical parameters
and thermal metrics to generate a Pareto-front of optimal layouts.
The proposed algorithms have four modes of operations for enhanced
flexibility in handling heterogeneous components. Our study demon-
strated that the proposed methodology with planar data structures is
preferable for heterogeneous power module layout optimization with
improved reliability, flexibility, scalability, and efficiency.

II. CORNER STITCHING AND CONSTRAINT GRAPH

The corner stitching data structure is widely used in the Magic
VLSI tool [18] for layout representation. Constraint graphs are very
popular in VLSI floorplan compaction problems. A short review of
corner stitching and constraint graph is presented here.

A. Corner Stitching

The corner stitching data structure is used to represent non-
overlapping rectangles called tiles. Two important features make
corner stitching better than others: a) both empty and occupied areas
are represented explicitly, and b) each tile contains four pointers
to preserve neighboring information. Using two top right and two
bottom left corner pointers (shown in Fig. 1 (c)) the whole layout area
can be traversed efficiently . To find horizontal and vertical constraints
properly from corner stitched layouts, two corner stitched layouts
(shown in Fig. 1 (a), and (b)) are created using maximal horizontal
and vertical rules respectively. The rules are: a) each tile must be
as wide (tall) as possible, b) after satisfying rule (a) each tile must
be as tall (wide) as possible. Due to the linear time complexity of
related operations such as point finding, tile creation, area searching
and the convenience of obtaining necessary design constraints, we
have found this elegant data structure to be best suited for power
module layout representation.

B. Constraint Graph

There are two graphs: horizontal constraint graph (HCG) and
vertical constraint graph (VCG) that encode the set of constraints,

one for horizontal constraints and one for vertical constraints. In the
constraint graph each vertex represents a coordinate in the corner-
stitched layout. Each edge between any pair of vertices represents the
relative locations between them. These graphs are weighted directed
acyclic graphs (DAGs), where weights represent minimum constraint
values. For example, if there is an edge between vertex i and j with
the weight wij, it reflects the inequality:

j− i ≥ wi j (1)

In VLSI floorplan compaction problems, these graphs are evaluated
using the longest path algorithm to have the minimum-sized layout
without DRC violations [19]. But in the case of power modules,
the evaluation algorithms have to be designed such that not only
the minimum sized layout, but also variable sized layouts can be
produced to address thermal and reliability issues.

III. METHODOLOGY

A. Existing Methodology

The existing layout engine of PowerSynth takes a symbolic layout
as input of the power module consisting of lines and points. The
engine converts the symbolic layout data into a 2-D matrix. Each
entry in the matrix has a list of pointers to the layout objects.
From this matrix, a design parameter list is derived and used for
optimization. The number of design parameters in the layout engine
is restricted by definition. So, this layout engine has less flexibility
in layout variation. All the gaps among components are fixed, and
each component has a one-dimensional variable width to be either
horizontal or vertical. The most important issue is with the design
rule checking. This layout engine checks each design rule one-by-one
after layout generation, which is not efficient as many solutions are
discarded. Also, it can only generate fixed-sized layout, which limits
the solution space.

B. Proposed Methodology

1) Data Structure: Due to inefficiency and restrictions with the
matrix-based methodology, we propose the corner stitching data
structure with constraint graph methodology for physical design of
heterogeneous power modules. In the proposed methodology, initial
layout information is taken from the user to generate horizontal and
vertical corner-stitched layouts. Tile insertion function uses point
finding, splitting, merging functions to insert a new component.
Here, each component is represented as a rectangle of individual
type. Therefore, heterogeneous components can be easily represented
and the number of components are not bounded, which ensures the
scalability of the proposed data structure. As the corner stitching
data structure is a planar data structure originally designed for VLSI,
the basic version does not allow overlapping of tiles. However,
overlapping is a must for proper representation of the layout structure
of power module, because devices (such as power FETs and diodes)
are normally placed on top of traces. Therefore, the basic tile insertion
function has been modified to allow overlapping of tiles.

2) Incorporated Constraints: For power module design, two types
of constraints are considered: design constraints and reliability con-
straints. Design constraints are minimum constraints imposed by the
technology, to ensure proper fabrication of the module. Reliability
constraints are considered to address issues related to high voltage
and current such as partial discharge and thermal.

i. Design Constraints: The following design constraints are con-
sidered to have DRC-clean layouts. An illustration of the constraints
are shown in Fig. 2.
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Fig. 2. Design constraints from (a) vertical, and (b) horizontal corner-stitched
layout.
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Fig. 3. (a) Half bridge power module layout and (b) associated reliability
constraints: G1 through G8 are voltage-dependent minimum spacing, and
traces have current-dependent minimum width.

• Minimum Width: Minimum width is associated with each com-
ponent in the power module. Some components can have a different
minimum width along x and y axis. All horizontal widths are taken
from horizontal corner stitch and vertical widths are taken from
vertical corner stitch.

• Minimum Spacing: Minimum spacing value is considered be-
tween two components. When there are multiple components in
between same vertices maximum value determines the spacing to
ensure DRC-validity. All horizontal spacing and vertical spacing
are taken from horizontal corner stitch and vertical corner stitch
respectively.

• Minimum Enclosure: To ensure proper connectivity, some com-
ponents are required to be surrounded by some other components
underneath, with a spacing known as minimum enclosure. For ex-
ample, when a device is placed on top of a trace, there should be a
minimum enclosure of the trace to the device.

• Minimum Extension: In some cases, there may be L-shaped
or T-shaped components, where one leg extends in the direction
perpendicular to the components routing direction. For those cases,
the minimum extension rule appears. Horizontal extensions can be
found from vertical corner stitch, whereas vertical extensions can be
found from horizontal corner stitch.

ii. Reliability Constraints: The following reliability constraints
are considered to minimize partial discharge, current crowding,
field focusing and increase the reliability of the power module. An
illustration of the constraints are shown in Fig. 3.

• Minimum Width: In a power module, power traces can carry
very high current, whereas signal traces carry very low current.
So, for power and signal traces, there should be different minimum
widths. As these minimum widths are current-dependent, user-defined
minimum width rule is considered in these cases. Between two
minimum widths (design constrained and reliability constrained), the
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Fig. 4. (a) HCG and (b) VCG of the layout in Fig. 2. Here E, S, W, and X
stand for min enclosure, spacing, width, and extension constrains, respectively.
Label h and v indicate the direction.

higher value is applied to the graph as the corresponding edge weight.
For example in Fig. 3, two current loadings require two different
minimum trace widths apart from the design constraints.

• Minimum Spacing: To minimize the effects of partial discharge
in the layout, voltage-dependent spacing rule is applied. This mini-
mum spacing depends on the voltage difference over the dielectric.
To comply with the dielectric breakdown voltages, minimum trace
spacing is calculated based on the voltage drop, so that current
crowding, field focusing, and partial discharge can be mitigated. Same
as current-controlled constraints, the higher value between design and
reliability constraints dominates. For example in Fig. 3, each gap is
subjected to a voltage-dependent constraint apart from the minimum
spacing value imposed by the technology. All vertical gaps are found
from vertical corner-stitched layout while horizontal gaps are from
horizontal corner-stitched layout.

3) Constraint Graph Creation: From each corner-stitched plane,
the constraint graph is created by iterating over entire design and reli-
ability constraints. Each corner-stitched plane is traversed from left to
right to create the HCG and bottom to top to create the VCG, which
results in horizontal and vertical weighted directed acyclic graphs
(DAGs). When there are both design and reliability constraints, the
greater constraint value takes effect. The HCG, and VCG created
from Fig. 2 are shown in Fig. 4. To keep the relative locations between
neighbor vertices, the black spacing edges are added between them
in the VCG. These are non-orthogonal constraints. For the given
example, there is no vertically orthogonal relationship between Y1,
Y2 and Y2, Y3. Therefore, those edges cannot be found directly
from vertical corner-stitched layouts. These constraint graph weights
are randomized to create new layout solutions. As the graphs are
created from planar corner-stitched layout, the relative locations of
all components are preserved in all the solutions.

C. Operating Modes and Evaluation Algorithms

The algorithms can serve four purposes to have better flexibility.
Therefore, four operating modes are summarized in Table I. The
existing layout engine has only fixed floorplan size solutions, whereas
the proposed one is giving three more options that can generate more
candidates for the designers to choose the optimum solution.

1) Mode-0: Mode-0 produces the minimum-sized layout that
reflects the maximum possible power density for a certain layout.
To evaluate the constraint graph, the longest path algorithm (shown
in Algorithm 1) is used. In this algorithm, the source vertex is set
at location 0. This means the reference coordinate of a layout is
(0,0). For the rest of the vertices in the topological order, incremental
locations from the source are calculated. Using the same algorithm,
the longest path from the source to any vertex can be determined.
While calculating the minimum location of a vertex, vertices traversed
are on the longest path from source to that vertex. So, these traversed



TABLE I
SUMMARY OF OPERATING MODES

Mode Purpose Evaluation Methodology
0 Minimum sized layout Minimum constraint values

1 Variable floorplan layouts
All Weights are randomized with

minimum constraints. No maximum
constraints

2 Fixed floorplan layouts All Weights are randomized with
minimum constraints. Some have

maximum constraints3 Fixed floorplan with fixed
component locations

vertices constitute the longest path. The maximum distance from the
source to each vertex is set as the minimum location of that vertex.
This algorithm has a time complexity O(E), where E is the number of
edges in the graph. The evaluated graph gives the minimum location
of each component in the layout.

Algorithm 1: Constraint Graph Evaluation(G)

1 A = Adjacency Matrix(G)
2 Location = { }
3 for i = 0 to length(A) do
4 Predecessors= list of predecessors of vertex i
5 if i == 0 then
6 Location[i] = 0
7 else
8 Value=[ ]
9 for j = 0 to length(Predecessors) do

10 V=Location[j] + A[j][i]
11 Value.append(V)
12 Location[i] = max(Value)
13 Return Location

2) Mode-1: Mode-1 can produce variable-sized layouts. In this
mode, all edge weights of the constraint graph are randomized based
on minimum constraint values. Gaussian distribution is used to vary
each edge weight within the limit of (min, c×min), where c is a
constant. The average is set to a value close to minimum constraint
value, and the standard deviation is adjusted accordingly. Then
the constraint graph is evaluated using the longest path algorithm
and all vertex locations are determined. Each evaluated constraint
graph determines the component location of the layout. The whole
procedure is iterated over N times to generate N number of layouts.

3) Mode-2 and 3: Mode-2 generates layouts having fixed floorplan
size. In the fixed area it randomizes the component location and
generates different solutions. Whereas in mode-3, not only the
floorplan size but also any component location can be fixed.

In general, if there is a connected weighted DAG and some vertices
locations are required to fix at some values, Algorithm 4 is the
proposed solution for such case. This algorithm can be used to solve
the special case of the problem where the only initial source and
sink vertices locations are to be fixed. This is the fixed floorplan
problem and is solved in Mode-2 evaluation. However, this algorithm
is generalized such that not only initial source and sink vertices but
also single or multiple intermediate vertex or vertices can be at fixed
locations. In Mode-3, the locations given for the components must
be greater than or equal to the minimum locations.

Some terminologies and concepts used in the algorithm are ex-
plained here:

• Fixed vertex: A vertex is fixed if it has the same minimum and
maximum location. In other words, if a vertex location is determined
or pre-defined that is called a fixed vertex. Each fixed vertex can be
treated as a potential source or sink vertex for a path in the DAG.
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Fig. 5. An example showing edge splitting process.
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Fig. 6. An example showing edge removal process.

• Non-fixed vertex: If a vertex location is not pre-defined or
determined yet, it is a non-fixed vertex and needs to be evaluated.

• Fixed edge: For an edge, whose weight must always be fixed, it
is called a fixed edge. For example, the edges associated with device
widths are fixed edges as the device width is always a constant.

• Edge splitting: If there is a fixed vertex in between the initial
source and sink vertices of a graph, edge splitting operation can be
applied to reduce computational efforts. If any edge satisfies: a) It
has both source or sink fixed, and b) it bypasses any fixed vertex that
edge is a candidate for splitting. So, if such edge is found that edge
is associated with at least two fixed vertices. Since a fixed vertex has
a known fixed location the distance between those two fixed vertices
is always a constant. Therefore, the total weight of the edge can split
into two parts: one from the source to intermediate fixed vertex and
another is from the intermediate fixed vertex to the sink vertex. Edge
splitting concept is illustrated using Fig. 5, where the edge from X2
to X4 weighting 15 satisfies splitting conditions. That edge is divided
into two parts: one between X2 and X3 with a weight of 9, another
between X3 and X4 with a weight of 6 as both X3 and X4 are fixed
vertices with a constant distance 6.

• Edge removal: If any edge has both the source and the sink
fixed that constraint value is of no use. Therefore, that edge can be
removed from the graph to reduce the graph size. Also, any fixed
edge in the graph is removable. Shown in the Fig. 6 example, X0,
X1, X3, X4, X5 are fixed vertices. So, all edges associated with these
vertices are removed.

• Graph splitting: If there are fixed vertices in between the initial
source and sink vertices, and no edge is bypassing that fixed vertex,
then that graph can split into two connected sub-graphs. Since a fixed
vertex is a potential source and sink that fixed vertex can be used as
a sink to the left sub-graph and a source to the right sub-graph.

• Randomization: Randomization is used to vary the edge weights



Algorithm 2: Find Loc (G,Source,Sink)

1 Path=Longest path(G,Source,Sink)
2 Values=list of minimum constraint values in the path
3 Total=sum(Values)
4 Max=Location[Sink]-Location[Source]
5 Range=Max-Total
6 Variable=Random value(Range,Value)
7 for i=0 to length(Path) do
8 if Path[i] not in Location then
9 L=Location[Path[i-1]]+Variable[i-1]

10 Location[Path[i]]=L

as well as locations of the components. If there is no fixed room for
randomization, each constraint value in the graph is randomized using
minimum constraint values. On the other hand, if the room is fixed for
a certain path in the graph, to ensure design constraint satisfaction,
sum of minimum constraint values of that path is subtracted to
determine the actual range of randomization. Then the problem is
similar to randomly distributing a constant value into several parts
having the same expectation. This way, the component width or
location is varied without violating any constraint.

The supporting functions for Algorithm 4 are discussed in Algo-
rithm 2 and 3. Algorithm 2 is used to evaluate the single-source-
single-sink graph that represents fixed floorplan sized layout. When a
graph has only two vertices (source and sink) at fixed locations, this
algorithm is used to evaluate the rest of the vertex locations in the
path. First, it finds the longest path from the source to the sink. Then it
finds the available quota for randomization. Variable is returned from
the function Random value, which generates the distributed random
values. Finally, the for loop finds each non-fixed vertex incremental
location in the path using the randomized values.

Algorithm 3 is used to evaluate the graph having multiple sources
and sinks that means both floorplan size and any of the components
are at fixed locations. This case happens when there is at least one
intermediate fixed vertex in between initial source and sink. Due to
the intermediate fixed vertex, while calculating the location of the
other non-fixed vertices, extra constraints are added. This algorithm
also starts with finding the longest path from the initial source to
the initial sink vertex. Then in the longest path for each non-fixed
vertex, all possible minimum and maximum locations are stored
in Min val and Max val dictionaries respectively. After that, each
non-fixed vertex location is found using randomization between the
minimum and maximum location. As soon as one vertex location is
calculated, it becomes another source and sink vertex for the rest
non-fixed vertices. So, each newly fixed vertex is appended to the
list of sources and sinks. This procedure is iterated until all vertices
in the path have fixed locations. The performance of the algorithm
increases with the increasing number of fixed vertices and the worst
case has no intermediate fixed vertex. So the time complexity is O(E),
where E is the number of edges in the graph.

In the Algorithm 4, edge splitting and edge removal are performed.
Then if there is an intermediate fixed vertex, it partitions the graph
from the initial source to that intermediate fixed vertex and from that
fixed vertex to the initial sink. With multiple fixed vertices, more
partitions are generated. A list of parts (Connected parts) is created
considering connectivity among different parts. For each connected
partition, the procedure Eval Loc is called as it reduces to a multiple-
source-multiple-sink problem. Otherwise, a list of connected sub-
graphs from Parts list is made, which ensures there is no intermediate
fixed vertex in each sub-graph. Then it reduces to a single-source-

Algorithm 3: Eval Loc(G,Sources,Sinks)

1 start=Sources[0], end=Sinks[0]
2 Path=Longest path(G,start,end)
3 Fixed=list of fixed vertices in the Path
4 Non-fixed=list of non-fixed vertices in the Path
5 while length(Non-fixed)>0 do
6 Min val={}
7 for each source in Sources do
8 for each vertex in Non-fixed do
9 Update Min val where key=vertex, value=list of

distance from source to that vertex
10 Max val={}
11 for each vertex in Non-fixed do
12 for each target in Sinks do
13 Update Max val where key=vertex, value=list of

distance from that vertex to target
14 vertex=Non-fixed.pop(0)
15 v1=max(Min val[vertex]), v2=min(Max val[vertex])
16 Location[vertex]=random(v1,v2)
17 Append the vertex to Sources and Sinks

Algorithm 4: Fixed Loc(G)

1 while all vertices are not fixed do
2 E= Dictionary of edges which are potential split candidates

foreach edge in E do
3 split edge(edge)
4 Fixed-vertices= list of vertices having fixed locations
5 foreach edge in G do
6 if edge is between a pair of fixed vertices then
7 G.remove(edge)
8 Parts list=list of parts of G having source and sink pair in

Fixed-vertices
9 Connected parts= list of parts from the Parts list which are

connected to each other
10 if Connected parts found then
11 foreach part in Connected parts do
12 Sources= list of all potential sources in part
13 Sinks= list of potential sinks in part
14 Eval Loc(G,Sources,Sinks)
15 else
16 Sub-graphs=list of connected sub-graphs in Parts list
17 foreach sub-graph in Sub-graphs do
18 Source=source of the sub-graph
19 Sink=sink of the sub-graph
20 Find Loc(G,source,sink)
21 Fixed-vertices= list of vertices having fixed locations
22 foreach edge in G do
23 if edge is between a pair of fixed vertices then
24 G.remove(edge)

single-sink problem and is evaluated using Find Loc procedure. After
evaluation, some vertices are fixed and edge removal is performed
again. The process is iterated until all vertices in the graph have
fixed locations. To keep track of the locations, a global dictionary
is maintained in which keys are vertices and values are locations
correspond to the vertices. The overall time complexity should be
O(E) as each edge is visited once in the whole procedure.

For mode-2, floorplan width and height are taken from the sink
vertex location of the HCG and VCG respectively. By default the
source vertex location is set at 0. Therefore, this is a single-source-



TABLE II
RUNTIME ANALYSIS OF PROPOSED ALGORITHMS, WITH 3015 LAYOUTS

GENERATED FOR OPTIMIZATION

Case # Tile # Vertex # Edge #
Runtime (s)

Mode-0 Mode-1 Mode-2
1 8 18 36 0.0159 2.4432 3.5713
2 15 28 68 0.0165 4.10597 7.1645
3 34 43 165 0.0294 7.7506 12.2803
4 72 63 311 0.0551 11.9551 34.1308

single sink constraint graph evaluation problem. The algorithm shown
in Algorithm 4 is used here to find all vertex locations. As there is no
intermediate vertex at a fixed location, no Connected parts is found,
and Location-finding algorithm(shown in Algorithm 2) is used for
evaluation with an O(E) time complexity.

Mode-3 allows fixing components (such as leads) at pre-defined
locations which are very useful for packaging purpose. As leads are
used for external connections, those positions should not be varied
from layout to layout. In case of mode-3 evaluation, width, height,
and some other component locations are taken as input in the form
of a dictionary. Due to intermediate vertices at fixed locations, at
least one multiple-source-multiple-sink case appears thus Algorithm 3
is used. After sufficient edge splitting and removal, the graph is
split into single-source-single-sink sub-graphs. Therefore, the Mode-3
operation is also performed in O(E) time complexity.

All of these algorithms are used to evaluate constraint graphs. Each
evaluated constraint graph gives all vertex locations that determine
component positions in the layout. The current layout engine of
PowerSynth randomly changes widths of the components and gener-
ates new layouts without any knowledge of design constraints, and
has to discard most generated solutions due to DRC-failure. Also,
the spacings between components are not considered as variables.
The current layout engine also does not allow different minimum
width assignment for the same component, which makes it incapable
of differentiating signal and power traces. Therefore, the reliability
constraints can not be considered at all.

IV. EXPERIMENTAL RESULTS

To evaluate the runtime of the proposed algorithms, several layouts
with a different number of components and different geometrical
complexity are chosen. The runtime summary for different operating
modes of the algorithms is shown in Table II.

For mode-1 and 2, 3015 layouts are generated for comparison.
Mode-3 operation comparison is not a good choice as it is not possible
to fix the same vertex locations for each layout. However, Mode-2
is actually a special case of Mode-3, except that only single source
and single sink are fixed. From Table II, it is clear that the proposed
methodology has a linear time complexity that ensures scalability for
heterogeneous power module layout optimization.

Layout generation efficiency comparison between PowerSynth ex-
isting and proposed layout engine is shown in Table III. Three layouts
with increasing geometrical complexity are chosen for comparison.
As current layout engine can only generate fixed-sized layouts, only
Mode-2 solutions of the proposed engine are comparable. From the
table it is clear that current layout engine is way less effective than
the proposed one. For some cases, current layout engine just fails to
generate a single valid layout, whereas the proposed layout engine
generates 100% valid layout solutions for all cases with a small
runtime overhead.

TABLE III
ALGORITHM EFFICIENCY COMPARISON BETWEEN CURRENT AND

PROPOSED LAYOUT ENGINES

Valid # out of 3015 Total Time(s)
Case # Current Proposed Current Proposed Floorplan Size

1 76 3015 0.74 3.57 30×30
2 1883 3015 1.25 7.16 40×50
3 0 3015 N/A 34.13 98×78
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Fig. 7. (a) A half-bridge power module, and (b) its minimum-sized layout.

A. Design-Constrained Layout Solutions

To show layout generation results with only design constraints
considered a complex half-bridge power module is chosen (shown in
Fig. 7(a)). In all layouts, green components are traces, red rectangles
are devices, the dark blue one is the DC link capacitor and the light
blue one is the connector for the gate driver. In these layouts, colored
blocks represent the room allocated to the corresponding component
rather than the actual component dimensions.

• Mode-0 result: The minimum sized layout generated using
standard design constraint values (shown in Table IV) is shown in
Fig. 7(b). Since all components are in the same plane, due to the
correlation between vertices in the constraint graph all components
are not in the smallest size.

• Mode-1 result: From the same initial layout, variable-sized
layouts are generated. Two sample results are shown in Fig. 8(a), (b),
where floorplan sizes are (165×92) and (145×113), respectively.

• Mode-2 result: In case of Mode-2, the floorplan size is (145×
140) in the layouts shown in Fig. 9.

• Mode-3 result: In case of Mode-3, the floorplan size is (100×
100). The capacitor (blue component) is fixed at location (50,40) in
both layouts shown in Fig. 10.

B. Design-and-Reliability-Constrained Layout Solutions

To demonstrate the capability of handling reliability constraints
such as voltage-dependent spacing and current-dependent width,
some constraint values are assumed as shown in the Table V. Using
these values, Fig. 12(b), (c) are generated. In Fig. 12 (a) only
design constraints are applied, which results in a constant minimum
spacing between traces and a minimum floorplan size among three
layouts. The layout shown in Fig. 3 has all components assigned with
voltage and current rating. This initial layout is used as the input for
generating layout solutions by the proposed layout engine. Applying
constraint values from Table IV and Table V minimum sized layout
is generated (shown in Fig. 12(b)). The voltage difference between
traces is rounded up to find the corresponding spacing constraint. For
example, the voltage difference over G3 is 25 V, thus it finds 100
V as the closest maximum, which imposes a 1 mm gap. Since the
minimum trace-to-trace spacing is 2 mm, as defined by the design
constraint, it dominates in this case. Similarly, as G6, G7, G8 are
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Fig. 8. Mode-1 layouts of the module in Fig. 7.
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Fig. 9. Mode-2 layouts of the module in Fig. 7.

correlated, 3mm is the maximum spacing imposed by reliability
constraint values. According to the design rule, the minimum trace
width is 2 mm. For signal traces, carrying a 2 mA current, it is
sufficiently reliable. However, power traces have a higher current
rating that imposes a higher reliability constraint value. Therefore,
power traces have a minimum width of 3 mm. Similarly, Mode-
1, 2, and 3 operations can be performed to generate variable, or
fixed floorplan layouts. For the same layout, power trace voltages are
assumed in kV range with a current of 400 A. Generated solutions
are shown in Fig. 12(c).

Applying the proposed algorithms, three different solution sets
from Fig. 3(a) are generated. For the first layout set, a fixed trace-
to-trace distance of 0.2 mm is applied. This layout set represents
the minimum manufacturable requirements without considering re-
liability constraints. In the second data set, both design as well
as reliability constraints are applied. Here, trace-to-trace distance
is varied with the voltage difference between traces. The current
dependent constraints are also applied in this case. To have reliable
layouts rated at 200 A peak current, the min trace width is set to
be 2 mm. The third data set is generated using a constant 4 mm
trace-to-trace distance to minimize PD and thermal issues. In each
case, 1000 candidate solutions with varying floorplan sizes from 2475
mm2 to 9000 mm2 are generated for optimization. Then, PowerSynth
electrical and thermal models are applied to evaluate the maximum
temperature as well as the loop inductance for each layout. Three
different Pareto-frontiers for the corresponding data sets are shown
in Fig. 11(a). As seen in the figure, the results from three data sets
illustrate expected relationships between inductance, temperature and
layout area. Inductance increases due to larger conduction loop while
temperature tends to reduce with the increased layout area. Due to
the smallest fixed gap of 0.2 mm, the first layout set has the largest
trace variation while the third case has the smallest. By applying
both reliability and design constraints, the second data set provides
not only DRC-clean layout solutions with good performance but also
ensures higher reliability in terms of thermal and partial discharge.
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Fig. 10. Mode-3 layouts of the module in Fig. 7.

TABLE IV
DESIGN CONSTRAINT VALUES IN MM.

Constraint Type Value
Min width of trace 2
Min width of die 4

Min dimension of capacitor 5×10
Min dimension of connector 10×5

Ledge width 2
Trace-to-trace spacing 2
Die-to-trace enclosure 1

Die-to-die spacing 1

This provides designers an opportunity to choose tradeoff between
performance and reliability. Third one can ensure better reliability
but has high parasitics. Three selected layouts having minimum
inductance from three Pareto-fronts are shown in Fig. 11(b), (c), and
(d). The first layout has the minimum gap, with the least reliability,
whereas the third one is the most reliable but with highest parasitics.
Therefore, the second layout is the most optimum in terms of both
electrical, thermal and reliability.

V. CONCLUSION AND FUTURE WORK

The corner stitching data structure and constraint graph method-
ology are highly-suitable for heterogeneous power module layout
synthesis and optimization. Constraint graph methodology has better
efficiency and scalability over the traditional matrix-based representa-
tion methodology used in existing layout design tools. The proposed
physical design approach generates DRC-clean layouts and eliminates
the DRC validation step in the optimization process to improve
efficiency. The algorithms are designed as generic and scalable as
possible to handle layouts with complex geometry and heterogeneous
components. Also, the reliability constraint-awareness adds a signifi-
cant feature to the layout generation methodology, which is extremely
useful for high-voltage power modules. Though the proposed planar
methodology is not giving the actual fabrication-feasible layouts due
to coordinate correlation, hierarchical layout representation will solve
this problem. In the hierarchical approach, the correlations between
components are minimized, which introduces a larger solution space
for optimization. The next target is to apply hierarchical constraint
graph methodology to generate more feasible layout solutions, exploit
different multi-objective optimization algorithms, and also explore 3-
D power module layouts optimization.
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Fig. 11. (a) Three Pareto-fronts of layout solutions. Sample 45×55mm2 layouts generated with (b) 0.2 mm gaps, (c) I-V dependent constraints, (d) 4 mm
gaps.
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Fig. 12. (a) Minimum sized layout considering design constraints only
(size=17 × 38) and with reliability constraints under (b) moderate voltage
and current load (size=21 × 47) and (c) high voltage and current load
(size=30×72).

TABLE V
VOLTAGE AND CURRENT DEPENDENT RELIABILITY CONSTRAINTS IN MM.

∆ Voltage (V) Min Spacing Current (A) Min Width
100 1 1 2
200 2 200 3
400 4 300 4
2000 5 400 5
4000 8
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