

VLSI-Inspired Design Automation for Scalable Power Electronics Layout Optimization

Tristan M. Evans, Yarui Peng, H. Alan Mantooth

- Background and Motivation
- Electronic Design Automation (EDA) for Power Electronics
- Proposed EDA Tool
 - Overview
 - VLSI Techniques Used
 - Results
- EDA Toward Converter Design
- Conclusion

Background and Motivation

Power Module Design

Traditional Multi-Chip Power Module (MCPM) Design:

- Multidisciplinary
- Employs multiple tools
- Computationally expensive and iterative

The field of Very Large-Scale Circuit Integration (VLSI) has developed many techniques for solving similar problems

PowerSynth Introduction

Cabinet

—							1
Exp <mark>or</mark> t &	Solution	Solution	Netlist S	Simulation	Export	Solution	EMPro
Simu <mark>la</mark> tion	Browser	Database	Exporting	Interface	Functions	API	ANSYS
]
Optimization	Genetic	Machine-	Simulated-	Pre/Post-	Layout O	ptimization	Matlab
Too <mark>lb</mark> ox	Algorithms	Learning	Annealing	Optimiz	ation	API	Scikit-Learn
]
Layout	Electrical	Thermal	l Reliability	Partial D	Discharge	Model	Matlab
Evaluation	model	model	model	m	odel	API	ParaPower
]
La <mark>yo</mark> ut	Constrair	nt Co	onnectivity	Layo	out	Geometry	Gmesh
Synt <mark>h</mark> esis	(DRC)		(LVS)	Genera	ation	API	Elmer
]
	Object-base	ed layout	MFG Design	Embedo	ded scripting	g Material	
Data Input	representation		Kit (MDK)	envi	ronment	API	ANOTO
L							J
PowerSynth 2	Synth 2PowerSynth 2Powen FlowArchitectureLib						PowerSynth 2
Design Flow						Libraries	

- EDA tool MCPM design
- Multi-objective layout optimization
- Reduced order models
- Pareto-front of tradeoffs
- Design export

Expanding PowerSynth Results

- PowerSynth optimizes for tradeoffs in :
 - Electrical performance
 - Thermal performance
 - Mechanical reliability
- Maintains design intent by altering trace geometry and device positions

Automatically synthesizing module artwork for given design criteria would lead to an expanded solution space in shorter time

PowerSynth optimization results with selected layouts from the Pareto frontier shown to scale

Proposed EDA Tool

Proposed EDA Tool Overview

- Netlist to layout
- Annotations drive:
 - Terminal locations
 - Device count/rating •
 - Placement, routing, and modularization parameters
- Synthesizes modules and their interconnects to hierarchically form converters
- Export designs as 3D models or PowerSynth projects

VLSI Design Flow

VLSI physical design steps

VLSI Inspiration: Circuit Partitioning

- Splits a larger circuit into smaller subcircuits or modules
- Aims to minimize the number of interconnects among modules

(a) (b) (a) Example circuit partitioning in VLSI with two cut lines shown. (b) Resulting modules formed by the cutlines in (a).

10

Circuit Partitioning for Power Electronics

- Power circuits can also be partitioned to realize different arrangements of modules
- Concept can be extended at different levels of hierarchy to realize non-standard module designs for larger converter designs

Various ways of partitioning a 3L-ANPC inverter into half-bridge modules (a, b) or two custom modules (c).

Floorplanning of Partitions

- Uses recursive Fidducia and Mattheyes (FM) bipartitioning to split converter design down to switching cell level in O(n) time
- Minimizes the number of interconnects at each step
- Hierarchical tree structure can be used as binary slicing tree for floorplanning with associated design string specifying horizontal or vertical cuts at each level
- Module depth used to determine cutoff for routing/bus bars

with floorplan of switch positions (b)

12

Building Modules and Determining Fitness

- Placement and routing techniques used to create routing groups and then modules
- Legalization minimizes geometry description while ensuring feasibility
- Simulated annealing employed to guide design string toward:
 - Routability
 - Path length between selected terminals
 - Overall footprint

Module Composition

Example: Half-Bridge Layout Synthesis

- Half-bridge module layout with 2 paralleled devices per switch position
- Synthesis constraints:
 - DC+ and DC- on left
 - AC output on right
 - Optimize for minimal wirelength from DC+ to DCand footprint area
- 55 unique layouts synthesized in 18 minutes

Trace Net Color Key: DC+ DC- AC_{Out} Gate_{High} Gate_{Low}

24 variations of the half-bridge module layout synthesis example

PowerSynth Integration

- Synthesizer excels at creating new layouts from minimal inputs
- However, lacks design optimization based on electrical and thermal models
- Integration with PowerSynth enables fast:
 - Generation and optimization of multiple layout variations for each synthesized design
 - Electrical and thermal tradeoff evaluation using tested models

PowerSynth Integration Results for a Half Bridge Design

- Using PowerSynth:
 - Generate 15 layouts for each of the 55 synthesized designs (825 data points)
 - Compare with 100 variations of a single, manual design
 - Optimize for tradeoffs in max junction temperature and loop inductance (DC+ to DC-)
- **Boundary conditions:**
 - 10 W/device power dissipation
 - 150 W/m²/K heat removal

Comparison of Pareto-optimal results for each type

Design Type	Inductance (nH)	Max Temperature (°C)
Manual	16.6	124
Synthesized	12.7	106

EDA Towards Converter Design

Converters from Synthesized Modules

FOR POWER ELECTRONICS

Lower Module Upper Module

Selected Trace Net Color Key: DC+ DC- AC_{Out} NP

3L-ANPC inverter partitioned into two custom modules

Synthesized module layouts (above) and the laminated bus bar-structure interconnecting them (below)

Potential for Area Reduction

3L-ANPC inverter from 3 standard 62 mm half-bridge module packages. 3L-ANPC inverter from 2 custom module layouts

- Introduced a new tool for hierarchical power converter design inspired by VLSI techniques
 - Netlist to layout
 - Fast generation of original design artwork
 - Integration with PowerSynth for detailed optimization
- Using tool with PowerSynth produces richer solution space in less time than single manual design
- Hierarchical implementation provides inroads to highdensity converter design automation

Thank you!

