

2023 IEEE Design Methodology Conference

A Comparative Study on Optimization Algorithms in PowerSynth 2

Mehran Sanjabiasasi¹, Imam Al Razi², H. Alan Mantooth¹, Yarui Peng¹

¹EECS, University of Arkansas, Fayetteville, AR ²Intel Corporation, Hillsboro, OR

🖂 yrpeng@uark.edu

Power Electronics is Everywhere

Power converters are essential parts of power systems

Electric automobiles

Smart grid

Consumer electronics

ELECTRIC GENERATION

A Comparative Study on Optimization Algorithms in PowerSynth 2

Multi-Chip Power Modules

MCPM is a critical component in power conversion applications.

Module design, mostly focusing on three parts:

- layout generation
- modeling
- optimization

[1] I. Al Razi, Q. Le, T. Evans, H. A. Mantooth, and Y. Peng, "PowerSynth 2: Physical Design Automation for High-Density 3D Multi-Chip Power Modules," IEEE Transactions on Power Electronics, 2023.

A Comparative Study on Optimization Algorithms in PowerSynth 2

UNIVERSITY O

ARKA

A software for MCPM layout optimization.

Hierarchical corner stitching data structure with a constraint graph.

PowerSynth 2: (2D/2.5D/3D) layout, lab validation

PowerSynth 2 GUI

[1] I. Al Razi, Q. Le, T. Evans, H. A. Mantooth, and Y. Peng, "PowerSynth 2: Physical Design Automation for High-Density 3D Multi-Chip Power Modules," IEEE Transactions on Power Electronics, 2023.

A Comparative Study on Optimization Algorithms in PowerSynth 2

UNIVERSITY O

ARKA

Power Modules layout optimization

PowerSynth 2 Existing Optimization Algorithms:

Randomization (RAND)

- + build-in algorithm
- + follows the hierarchy structure
- blind search

• NSGA-II

- + fitness evaluation guided
- unaware of the layout hierarchy

(a) Parato Front comparison and (b) two selected layouts.

- **1.** A hierarchical optimization framework for power module layout optimization
- 2. A new layout optimization algorithm based on Multi-Objective Particle Swarm Optimization (MOPSO)
- 3. A qualitative comparative study using various performance indicators on the latest optimization Algorithms

Design String

• Decision Variables are grouped into a list of design strings.

$$\{[H_1, H_2, H_3, \dots, H_n][h_{11}, h_{12}, h_{13}, \dots, h_{1m}] \\ [h_{21}, h_{22}, h_{23}, \dots, h_{2m}] \dots [h_{n1}, h_{n2}, h_{n3}, \dots, h_{nm}] \}$$

subject to $\sum_{n=1}^N H_n = Room$ and $\sum_{m=1}^{M \le N} h_{nm} = H_n$

An example horizontal design string

Hierarchical Optimization

- MOPSO was proposed by [1] in 2004.
- Stochastic search, population-based, evolutionary computation technique
- Like PSO, particles are sharing information and moving towards the global best particles and their own personal (local) best memory.
- The inertia weight α equals 0.9
- b and c are random numbers [0,1]
- Mutation probability: 1/DV#
 applied on 1/3 population

Algorithm 1: MOPSO Workflow

- 1 Initialize External Repository (ER)
- 2 for each particle do
 3 | Initialize the particle's position & velocity randomly
- 4 Evaluate particle
- 5 Update the best personal value and archive it in ER
- 6 while Maximum Iteration is not met do
- 7 **for** each particle **do**
- Select a leader from the ER
- V = a * V + b * (Pbest POP) + c *
- (BestER(h) POP)
- 10 POP = POP + VPerform Mutation with the Swarr
- II
 Perform Mutation with the Swarm
- 12 Evaluate particle
- 13 Update the best personal value and archive it in ER
- 14 update leader in ER
- 15 Return ER as a Pareto Front Solutions

[1] C. Coello, G. Pulido, and M. Lechuga, "Handling Multiple Objectives with Particle Swarm Optimization," IEEE Transactions on Evolutionary Computation, 2004.

Example Layout

Illustration of an Example

A Comparative Study on Optimization Algorithms in PowerSynth 2

Example Layout

9/27/2023

Algorithm 2: Construction of Decision Variables (DV) **1 Inputs**: HCG, VCG, Layout hierarchy, User constraints 2 Outputs: HDV, VDV 3 for each tree from leaf to root do Perform bottom-up constraint propagation Bottom-up Evaluate the root node and determine the ID and 5 propagation numbers of flexible edge weights 6 Append them to the HDV list 7 for each sub-tree from root to leaf do Determine the ID and Numbers of flexible edge 8 Top-Down weights propagation Append them to the HDV list 9 **10** Perform Optimization Algorithms

VDV = [[P1, P2, P3, S4, P5, P6, S5, P7], [E1, S1], [E4, S3]]

UNIVERSITY O

Hierarchical Optimization

1 G	Senerate initial population for each sub-decision variables randomly	Individuals Position, Velocity
2 f(or each population do	
3 4	Normalized each sub-decision variables Evaluate and find the best solution	Electrical and Therma
5 W	while Maximum Iteration is not met do	
6	Generate new solutions based on the existing ones	Crossover, Mutation Velocity, Position
7	for new solutions do	
8	Normalized each sub-decision variables	
9	Evaluate and find the best	
0	update the best solution	Non-dominated
1 F	ind out the Pareto Front from the best solutions	

Normalized Pop1 = [[0.12, 0.26, 0.05, 0.03, 0.17, 0.11, 0.14, 0.12], [0.34, 0.66], [0.92, 0.08]] UNIVERSITY OF ARKANSAS

Hierarchical Optimization

E.g., ID1 has a room of 10:

• The edge weights are calculated by each ID list multiplied by the available room: Normalized Pop1 = [[0.12, 0.26, 0.05, 0.03, 0.17, 0.11, 0.14, 0.12], [0.34, 0.66], [0.92, 0.08]]

ID1 : [**1.2**, 2.6, 0.5, 0.3, **1.7**, 1.1, 1.4, 1.2]

ID2 : [0.408, 0.792]

ID3 : [1.564, 0.136]

UNIVERSITY O

Performance Indicator

Comparison between indicators [1]

Modified Generational Distance (GD⁺) & Inverted Generational Distance (IGD⁺):

Average distance between given Pareto to reference Pareto

• Epsilon (ε):

Maximum distance between the reference and the given Pareto

• Error Ratio (ER):

Number of non-dominated solutions in reference Pareto

• Hypervolume (HV):

Size of the space covered by Pareto

Indicators	GD+	IGD+	ε	HV	ER
Convergence	+	+	+		
Cardinality				+	+
Distribution		+		+	
Spread			+	+	
Preference	Lower	Lower	Lower	Higher	Lower

[1] C.Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon, "Performance Indicators in Multiobjective Optimization," European Journal of Operational Research, 2021.

Case Study Summary

Summary of test case designs

- Fitness Function = Minimizing (power loop inductance, maximum temperature)
- The reference Pareto Front is obtained by combining the results from all algorithms
- The number of layout Generations:
 - 2D cases: all algorithms: 400
 - 3D cases: RAND:400, NSGAII(Old, New), MOPSO: 200

Summary of test case designs [1]

Design	2D/3D	Packaging	Paral. Sw.	Cooling	Final Size (mm ²)
Case 1	2D SiC	Wire-bonded	2	Single-sided	40 × 50
Case 2	2D SiC	Wire-bonded	2	Single-sided	40 × 50
Case 3	3D SiC	Metallic post	3	Double-sided	30 × 15
Case 4	3D SiC	Wire-bonded	2	Double-sided	30 × 30

• Case 1 and Case 2 are 2D Half-bridge SiC modules with two switches in parallel.

- Case 3: four-layer 3D Half-bridge SiC modules, metallic post-type vias.
- Case 4: two-layer 3D Half-bridge SiC modules, bonding wires.

[1] PowerSynth source code: https://github.com/e3da/

Analysis Result Summary

Result Comparison

- MOPSO outperforms NSGA-II in GD+ and IGD+ convergence indicators for all Cases.
- MOPSO and NSGA-II obtain similar HV in Case 1-3.
- In Case 4, MOPSO clearly outperforms NSGA-II in all indicators.
- Overall, MOPSO is faster to converge to the Pareto and outperforms NSGA-II in general.

Casa	Indicator	Current		Proposed	
Case		RAND	NSGAII	MOPSO	NSGAII
	DG+	1.172	2.149	0.049	0.360
Casa	IGD+	1.165	0.948	0.042	0.056
	Epsilon	1.719	1.160	0.118	0.278
•	HV	41.72	44.41	59.37	57.38
	ER	1.000	1.000	0.407	0.593
	DG+	0.310	1.295	0.044	0.197
Casa	IGD+	0.977	2.007	0.032	0.173
	Epsilon	3.731	5.214	0.419	0.516
2	HV	42.71	25.83	47.95	45.61
	ER	0.977	1.000	0.295	0.727
	DG+	0.129	0.104	0.023	0.049
Casa	IGD+	0.205	0.111	0.032	0.043
	Epsilon	0.771	0.380	0.156	0.221
5	HV	5.252	5.743	6.267	6.206
	ER	0.893	0.893	0.571	0.714
	DG+	0.354	0.078	0.000	0.303
Casa	IGD+	0.598	0.080	0.004	0.284
	Epsilon	1.163	0.137	0.024	0.626
4	HV	3.411	6.161	6.617	4.886
	ER	0.607	0.893	0.571	1.000

Case 1

- The proposed method performs better than the current method.
- MOPSO obtained a better Pareto Front solution than NSGA-II.
- MOSPO generates optimal results faster than NSGA-II for this case.

Comparison of different algorithms in Case 1: (a) Pareto Front, (b) Hypervolume, (c) Epsilon

UNIVERS

Case 1

- Seven distinct floorplan sizes, ranging from 1225 mm to 2225 mm.
- MOPSO solution space is more spread and distribution than that of RAND.

UNIVERSITYO

ARKA

Case 1

- Layout A: highest inductance value, lowest temperature.
- Layout C: worse thermal results, better electrical performance.
- Layout B: balanced tradeoff between the two extreme choices.

Three selected solutions by MOPSO

UNIVERSITY O

Case 2

- The proposed method performs better than the current method.
- MOPSO obtains a comparable Pareto Front solution to NSGA-II.
- The solution space expands and concentrates towards the Pareto Front over iterations.
- MOPSO demonstrates a higher convergence speed.

Comparison of different algorithms: (a) MOPSO solution space over iteration, (b) Pareto Front (c) Global best solutions

Three solutions were generated by MOPSO. All layouts are 40×50 mm²

Case 3

- The proposed methodology outperforms the current method.
- MOPSO obtained a comparable Pareto Front solution to NSGA-II.

Comparison of different algorithms in Case 3: (a) Pareto Front, (b) Hypervolume, (c) Epsilon

Case 3

- Layout A: lowest inductance value, highest temperature.
- Layout C: better thermal performance, worse electrical results.
- Layout B: balanced Electro-thermal solution.

Three solutions were generated by NSGAII. All layouts are 30×15 mm²

Runtime Comparison

- The proposed algorithms have comparable runtime to NSGA-II, but RAND is 5-7 times faster due to parallelization.
- NSGA-II and MOPSO can also be accelerated with parallel computing in the future.
- Hierarchical optimization does not introduce much runtime overhead

Case	RAND	NSGAII(Old)	NSGAII(New)	MOPSO
Case 1	15.5	16.0	16.0	16.0
Case 2	15.4	14.8	15.0	15.0
Case 3	20.0	100	103	103
Case 4	9.0	63.0	64.0	65.0

- PowerSynth 2 optimization algorithms have been updated from planar to hierarchical.
- A new MOPSO is proposed as a faster alternative to existing NSGAII and RAND.
- Five indicators and runtime are considered to evaluate other aspects of the algorithms.
- Hierarchical optimizations significantly improve result quality and solution space size with minimum runtime overhead
- MOPSO is comparable to NSGA-II in terms of distribution and spread but achieves a faster convergence speed.

Future Work

- Proposed method will be open-sourced and released as PowerSynth v2.1 for testing.
- Implement Parallel computing to accelerate the runtime of these algorithms further.

Thank you

📙 https://e3da.csce.uark.edu

🖂 yrpeng@uark.edu

*** +1 (479) 575-6043**