

UNIVERSITY O

ARKA

Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

Yarui Peng

Assistant Professor

Computer Science and Computer Engineering

University of Arkansas

L https://e3da.csce.uark.edu

🖂 yrpeng@uark.edu

Multi-Chip Power Modules

□ Foundation element of power converters

□ Integrates power devices and control circuitry in a single package

Wide Bandgap Devices (SiC/GaN)

- Increased power density
- New packaging technologies
- Heterogeneous integration

R&D 100 Award-Winning MCPM Design

MCPM layout design complexity is increasing

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

ARKAN

Traditional Design Flow

Traditional:

- Manual, iterative
- Computationally expensive
- Single solution at a time
- Interaction with multiple FEA tools
- No known-good module before fabrication and testing
- Requires human expertise

Automated Design Flow

Automated:

- Reduced time and cost
- Reduced-order modeling
- Large solution space at a time
- Multi-objective optimization
 - Electrical
 - Thermal
 - Mechanical
 - Reliability

Known-good module before fabrication

UNIVERSITY OF

Power Module Design Automation Efforts

Methodology Features	Puqi Ning et. al. (2017)	Shuhei et. al. (2021)	Zhou et. al. (2022)	
Initial layout	Simplified	Simplified	Not required (Template library & Netlis	
Layout generation method	Sequence pair	Parameter sweep	Integer linear programmin & Block graph model	
Layout types	2D	2D	2D	
Scalability	N/A	N/A	N/A	
Interconnection technology	Wire bond	Wire bond	Wire bond	
DRC checking	Required	Required	Not required	
Solution space	Limited	Limited	Limited	
Hierarchical optimization	N/A	N/A	N/A	
Performance evaluation	Discrete model	Finite element analysis	In-house model	
Objectives	Objectives Area and power loop inductance		Multiple loop inductance & Junction temperature	
Reliability optimization	N/A	N/A	N/A	
Optimization algorithm	Evolution (GA)	Evolution (NSGA II)	Evolution (NSGA II)	
23/2023 Pov	werSynth 2: Physical Design Automation fo	r High-Density 2D/2.5D/3D Multi-Chip Powe	er Modules	

PowerSynth Motivations

Features:

- Built-in technology library
- Symbolic layout input
- Matrix-based layout generation
- Reduced-order and fast electrical, thermal models
- Multi-objective optimization through GA
- Pareto-front solution browser
- Export solution to commercial FEA tools
- Post-layout optimization: filleting sharp corners
- Parasitic netlist extraction

V1 Limitations:

- Fixed layer stack
- Simple 2D layout geometry only

PowerSynth v1.1 work flow

- Limited solution space
- Requires iterative DRC

6

UNIVERSITY OF

ARKAI

PowerSynth Development Summary

Features

- 2D layouts with complex geometry
- Constraint-aware, flat-level layout engine
- Heterogeneous components
- Multiple optimization techniques
- All 2D/2.5D Manhattan geometries
- Hierarchical layout representation & optimization
- Larger solution space
- Hardware-validated optimization result
- All 2D/2.5D/3D Manhattan layouts
- Both GUI and CLI for users
- Randomization and NSGAII
- Electro-thermal and reliability optimization
- Hardware-validated CAD flow

PS v1.3/1.4

PS v1.9

PS v2.0

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

UNIVERSITY O

ARKA

PowerSynth 2 Architecture

Design Flow Core: 2D/2.5D/3D Designs, Python 3.8, QT 5.12, Windows/Linux

External Tools

[1] Imam Al Razi, Quang Le, Tristan Evans, H. Alan Mantooth, and Yarui Peng, "PowerSynth 2: Physical Design Automation for High-Density 3D Multi-Chip Power Modules", (accepted) IEEE Transactions on Power Electronics, 2023.

2D-2.5D-3D Module Definition

Definition under PowerSynth scope:

- 2D: One device layer with routing layers on the same substrate
- 2.5D: Multiple 2D designs connected on a supporting 2D plane
- 3D: Multiple device layers stacked vertically on the same substrate

Circuit schematic of a full-bridge module

5/23/2023

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

PowerSynth 2 User Interfaces

Command Line Interface (CLI)

- Linux compatibility
- User input through terminal
- Modes: Script-based or Step-by-step

Graphical User Interface (GUI)

- Two flows:
 - Creating new project
 - Run existing project through 'Macro script'
- MDK editor
- Optimization setup
- Performance evaluation model setup
- Interactive solution browser

PowerSynth v2.0 GUI

Features:

- Generic, hierarchical layout description script
- Generic, scalable layer stack
- Different types of constraints: design/reliability
- 100% DRC-clean solutions
- Hierarchical approach: 2D/2.5D/3D layout handling
- Generic, scalable, and efficient methodology→ SOTA 2D/3D packaging solutions
 - Hierarchical corner stitch data structure
 - Layer based geometry representation
 - Hierarchical constraint graph evaluation
- Three types of layout generation capability:
 Minimum-size/Variable-size/Fixed-size

Layout generation workflow

2D vs. 3D Layout

□ Initial Layout

Half-bridge MCPM: 2D structure (left), 3D structure (right)

Performance comparison

Metric	2D	3D
Loop Inductance	15.93 nH	6.104 nH
Max Temperature	332.15 K	370.29 K (single-side cooling)
		328.38 K (dual-side cooling)

• Min-Sized layout:

2D power loop

Imam Al Razi et.al, "Physical Design Automation for High-Density 3D Power Module Layout Synthesis and Optimization", in ECCE, pp. 1984–1991, Oct 2020

High-Density SOTA Packaging Layouts

Layout Types:

- 2D/2.5D/3D wire bonded, wire bondless, hybrid, Flip-chip
- Generic algorithm to generate all types of solutions

5/23/2023

Loop-Based Electrical Modeling

Features:

- Efficient mutual inductance calculation
- Divide and conquer strategy during evaluation
- Less elements in the extracted netlist
- Suitable for post-layout analysis while fast and accurate for layout optimization purpose

Workflow [1]:

- Find the forward and return path from the layout
- Form a directed graph to store information
- Divide the layout into two groups: Horizontal and Vertical bundles
- Evaluate parasitic parameters for each bundle

Combine both into the total loop result

[1] Quang Le, Imam Al Razi, Tristan Evans, Shilpi Mukherjee, Yarui Peng, and H. Alan Mantooth, "Fast and Accurate Parasitic Extraction in Multichip Power Module Design Automation Considering Eddy-Current Losses", (accepted) IEEE JESTPE, 2022.

14

UNIVERSITY O

Example for 2D and 3D Layouts

Loop-model vs FastHenry: 7% error

- Shows up to $800 \times$ speed up for matrix evaluation
- Netlist size reduction: >1000x versus PEEC

Layout	Methods	L _{Loop} (nH)	Run Time (s)			Netlist	Speed	Error
Case			Formulation	Evaluation	Total Time	size	up	EIIOI
	FastHenry	17.3			8	1		
2D case	PEEC	16.1	0.5	0.345	0.8345	1820	9.6×	6.9%
	PowerSynth	16.5	0.42	1.4m	0.434	9	18.6×	4.6%
3D case	FastHenry	7.93			25	1		
	PowerSynth	8.54	0.8	2.43m	0.824	50	30×	7.1%

5/23/2023

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

SAS

Reliability Optimization Using PowerSynth

PowerSynth 2 allows:

- Integration external modeling efforts/tools through APIs
 - ParaPower: Army Research Lab (ARL) developed thermal and stress evaluation tool
- Handling both types of interconnects (i.e., wire bonds and solder joints)
- Considering arbitrary layer stack
- Material library modification

To perform reliability optimization, it requires efficient, and accurate models

□ In this work, MCPM layouts are optimized for two major reliability threats:

- Thermal cycling impact minimization
 - Transient thermal model for 2D MCPM layouts
 - Phase change material (PCM) consideration
- Electromigration associated risk assessment
 - Current density modeling through Z-Mesh tool

[1] ARL ParaPower, "https://github.com/USArmyResearchLab/ParaPower".

Q

Transient Thermal Optimization

Two-step optimization flow:

Step-1: Layer stack optimization

Material, thickness variation

• Step-2: Layout optimization

- Placement of devices & routing of traces
- Variable floorplan sizes

ParaPower

• Newly developed transient thermal model:

- Max, average, peak-to-peak temperature evaluation
- Both static and transient thermal evaluation
- Interaction among three tools

[1] Imam Al Razi, David Huitink, and Yarui Peng, "PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module", in Proc. IEEE Applied Power Electronics Conference, pp. 1516-1523, Jun 2021.

17

HSPICE

Implementation using PowerSynth 2 APIs:

Mean Time To Failure (MTTF) Calculation :

Closed-formula approach (Black's Equation for Electromigration)

 $MTTF = A j^{-2} \exp(E_a/kT),$

where, A = constant, j = current density, E_a = Activation energy, k = Boltzman constant,

T= Temperature

Data-Driven Model

- Look-up table from experimental results
- Parameter tuning on analytical models from experimental results

[1] Imam Al Razi, Whit Vinson, David Huitink, and Yarui Peng, "Electromigration-Aware Reliability Optimization of MCPM Layouts Using PowerSynth", in Proc. IEEE Energy Conversion Congress and Exposition, pp. 1-8, Oct 2022.

Hierarchical Layout Representation

3D Wire-Bonded half-bridge MCPM layout

Hierarchical tree

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

19

ARKANSAS

Layout Optimization Algorithms

Comparison for wire-bond less 3D module

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

20

3D Layout Optimization Results

3D Wire-Bonded Layout Case

- Electro-thermal optimization
 - Six floorplan sizes
 - 1200 total layout solutions
 - 43 min total runtime

Performance Values L (nH) Size (mm²) Max T (K) ID 4.05 359.87 45×45 Α В 2.87 378.88 37.5×37.5 С 2.54 397.41 32.5×32.5

21

UNIVERSITY OF

Experimental Design Fabrication

Post-Layout Optimization

- Solution layout B has been tuned for gate loop optimization
- Modified solution is exported to SoliDWorks and taped out for fabrication

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

Experimental Design Validation

Double Pulse Test (Experimental Setup)

5/23/2023

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

23

Module Functionality Validation

Double Pulse Test Results

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

Electrical Model Validation

Impedance Measurement

5/23/2023

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

Thermal Model Validation

Embedded Cooling Concept

Boundary Conditions:

- Heat dissipation/die: 10.2 W
- Effective h: 7394 W/m²K
- Ambient T: 297 K

Case	Maximur	n Tempera	% of	
	D1	D3	D5	Mismatch
Measurement	37.00	38.80	37.90	-
ParaPower	40.75	42.30	40.78	9.02%

Optimization Validation & Comparison

Source	Architecture	Packaging	Power Loop	Cooling	Device Rating	Devices/	Area
			9.7		1200 11/100	Sw. Position	$(mm \times mm)$
[84]	2D Phase-leg	Wire-Bonded	(Planar loop)	Single	1200 V/ 100 A	5 SIC MOS	88.1×50.1
[85]	2D Half-bridge	Wire-Bonded	7.5 (Vertical loop)	Dual	650 V/ 200 A	3 SiC MOS	60×80
[86]	2.5D Half-bridge	Hybrid	2.60 (Vertical loop)	Dual	1200 V/ 90 A	1 SiC MOS	40×37
[87]	2.5D Half-bridge	Hybrid	3.38 (Vertical loop)	Single	1200 V/ 24 A	1 SiC MOS	21 × 11.5
[88]	2.5D Half-bridge	Hybrid	4.3 (Vertical loop)	Single	1200 V/ 40 A	2 SiC MOS	23.7 × 14.2
[89]	2.5D H-bridge	Wire Bondless	4.5 (Vertical loop)	Dual	1200V/ 50A	4 SiC MOS	76.9×74.9
PS v1.9	2D Half-bridge/ 2.5D Full-bridge	Wire-Bonded	7.58 (Planar loop)	Single	1200 V/ 40 A	2 SiC MOS	40×40
[90]	3D Half-bridge	Wire-Bondless	0.93 (Vertical loop)	Dual	650 V/ 60 A	2 GaN HEMT	45 × 35
[91]	3D Half-bridge	Wire Bondless	4 (Vertical loop)	Dual	1200 V/ 50A	2 Si IGBT	42.5×40.1
[92]	3D Half-bridge	Flip-chip	4.5 (Vertical loop)	Dual	900 V/ 194 A	2 SiC MOS	28×50.5
[92]	3D Half-bridge	Wire Bondless	5.1 (Vertical loop)	Dual	3300 V/ 50 A	2 SiC MOS	27×46.4
PS v2.0	3D Half-bridge	Wire-Bonded	3.43 (Vertical loop)	Embedded	900 V/ 194 A	3 SiC MOS	37.5 × 37.5

[1] Imam Al Razi, "Constraint-Aware, Scalable, and Efficient Algorithms for Multi-Chip Power Module Layout Optimization", Ph.D. Dissertation, July 2022. UNIVER

5/23/2023

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules

27

Conclusions

- PowerSynth is the first power module layout synthesis and optimization framework promising for design automation in the power electronics industry.
- PowerSynth 2 improves scalability, accuracy, efficiency, and handles 3D layouts
 - Generic, Scalable, and hierarchical representation technique → All 2D/2.5D/3D
 - Design and reliability constraints \rightarrow 100% DRC-clean and reliable solutions
 - Both 2D/2.5D and 3D CAD flow have been hardware-validated
 - PowerSynth flow vs. traditional
 Order of magnitude productivity improvement
 Accuracy: 10-15%, Speedup: X1000, Memory reduction: X100
 - First tool to consider electro-thermo-mechanical and reliability co-optimization.
 - Both GUI and command-line interfaces for users
 - Release Package, Manual, Design Cases, Source Code Available to public

Current Limitations:

Initial layout template dependency & Limited to Manhattan layouts

Thank You

v1.1 Public v1.3/1.4 Public v1.9 Public PowerSynth 2 v1.0 Release Release Release 2D/2.5D/3D Module Internal 2D Module 2.5D Module Design Release Design Design

Release Webpage: <u>https://e3da.csce.uark.edu/release/PowerSynth/</u> Source Code on Github: <u>https://github.com/e3da</u>

UNIVERSITY OF ARKANSAS 29

5/23/2023

PowerSynth 2: Physical Design Automation for High-Density 2D/2.5D/3D Multi-Chip Power Modules