

Advancing Technology

for Humanity

IEEE ENERGY CONVERSION CONGRESS & EXPO Betroit, Michigan, USA @ct.9-13

Electromigration-Aware Reliability Optimization of MCPM Layouts Using PowerSynth

Imam Al Razi¹, Whit Vinson², David R. Huitink², Yarui Peng¹

¹Computer Science and Computer Engineering

²Mechanical Engineering

University of Arkansas

Fayetteville, AR

******** +1 (479) 575-6043

🔜 https://e3da.csce.uark.edu

🖂 yrpeng@uark.edu

Introduction

□ What is Electromigration (EM) ?

- A material migration based on the flow of current through it
- A diffusion-controlled process.
- Accelerated by:
 - High current density
 - High temperature

Why EM is a concern in Power Modules ?

- Recent trend toward high power density
 - Increasing current density and temperature
- Reliability of the interconnects: Wire bonds, solder bumps
 - Void formation: Open circuit
 - Hillock formation: Short circuit

Before

After

void formation Short ckt formation EM impact on interconnects KANSA

EM Risk Assessment Modeling Approaches

Analytical & Experimental

- combined effect of high current and high temperature on Ag, Cu, and Au wire bonds [1]
- An electrical-thermal-mechanical coupled EM analysis in a bonding wire of a power module [2]
- Current density variation impact on wire bond resistance and die attach solder [3]
- Optimizing solder bump structure through solder bump parametric variation in [4]
 - Solder material
 - Solder bump diameter/pitch
 - Geometry

Solder bump distribution orientation variation for optimization [5]

All efforts are based on manual parameterization and experimental studies

[1] P. Lall et. al., "Study of Electromigration in Cu and Ag Wirebonds Operating at High Current in Extreme Environments," in IEEE iTherm, 2017

[2] M. Kato et al., "Electromigration Analysis of Power Modules by Electrical-Thermal-Mechanical Coupled Model," in ASME IMECE, Nov. 2019.

[3] H. Luo et al., "Study of Current Density Influence on Bond Wire Degradation Rate in SiC MOSFET Modules," IEEE JESTPE, 2020.

[4] M. Montazeri et al., "Vertically Stacked, Flip-Chip Wide Bandgap MOSFET Co-Optimized for Reliability and Switching Performance," IEEE JESTPE, 2021.

[5] C. Hau-Riege and Y. Yau, "Electromigration Reliability of Solder Balls," in IEEE IPFA, 2018

Motivations & Contributions

Motivations

- No design automation effort for EM assessment
- High density power module optimization requires
 EM-aware reliability optimization
- Need EDA tools for EM-aware layout optimization
- Our solution: EM-Aware PowerSynth 2 [1]

Contributions

- Current density distribution for DC and AC
- A generic EM-aware risk assessment workflow
 - Analytical
 - Data-Driven
- Case studies demonstration: Power module with solder bumps and wire bonds
- EM-aware electro-thermal optimization using PowerSynth 2

[1] I. Al Razi et. al., "Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation," ICCAD, 2021.

PowerSynth 2 GUI

Architecture

[1] PowerSynth Release Website: https://e3da.csce.uark.edu/release/PowerSynth/

Electromigration-Aware Reliability Optimization of MCPM Layouts Using PowerSynth

UNIVERSITY OF ARKANSAS

Reliability Optimization Using PowerSynth

PowerSynth 2 allows:

- Integration external modeling efforts/tools through APIs
 - ParaPower: Army Research Lab (ARL) developed thermal and stress evaluation tool
- Handling both types of interconnects (i.e., wire bonds and solder joints)
- Considering arbitrary layer stack
- Material library modification

To perform reliability optimization, it requires efficient, and accurate models

Currently, MCPM layouts can be optimized for two major reliability threats:

- Thermal cycling impact minimization [1]
 - Transient thermal model for 2D MCPM layouts
 - Phase change material (PCM) consideration
- Electromigration associated risk assessment
 - Current density modeling through Z-Mesh tool

[1] Imam Al Razi, David Huitink, and Yarui Peng, "PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module", APEC, 2021. [2] ARL ParaPower, "<u>https://github.com/USArmyResearchLab/ParaPower</u>".

Objectives:

- Quick assessment of risks associated with electro migration (EM) and mechanical failure of interconnects.
- Optimize power module layout to reduce the risk of failure of interconnect.

Methodology

• Features to be considered:

- Layout generation capability with different interconnects
- Fast and accurate model for current density estimation through interconnects.
- Fast and accurate model for temperature and stress distribution

Optimization workflow

Implementation using PowerSynth 2 APIs:

Mean Time To Failure (MTTF) Calculation :

Closed-formula approach (Black's Equation for Electromigration)

$$MTTF = \frac{A}{j^2} e^{\frac{E_a}{kT}}$$

• where, A = constant, j = current density, E_a = Activation energy, T= Temperature

Data-Driven Model

- Look-up table from experimental results
- Parameter tuning on analytical models from experimental results

Zmesh model is derived based on a fast-and-accurate resistive mesh network modeling Rmesh tool, first developed to model IR-drop in 3D DRAM

- Validated against Cadence EPS with 103x runtime speed up using a DDR3 layout
- Extended to cover both DC and AC frequency for power electronics useage

Runtime: 5s

[1] Yarui Peng et al., "Design, Packaging, and Architectural Policy Co-Optimization for DC Power Integrity in 3D DRAM", in Proc. Design Automation Conference, pp. 1–6, Jun 2015.

UNIVERS

ARKA

Layout Solution Generation

• Flip-Chip Design:

- Half-bridge module: Two SiC devices/switching position
- Source side is directly bonded
- Drain side is extended through metallic connector and bonded with solder balls.

Initial Layout

Minimum-sized Layout (58 mm×31 mm)

Current Density: Z-Mesh tool

Temperature Distribution: ParaPower

Z-Mesh Modeling

Workflow

Performance Comparison

Model	Runtime (s)	Speedup	Memory (MB)	Memory Reduction
ANSYS	310	×1	10329	×1
Z-Mesh	0.28	×1107	513	×20

UNIVERSITY OF ARKANSAS

Frequency Dependent Current Density

- At DC, intra-die current density variation is observed
- Frequency increases → loop impedance increases → inter-die current density variation increases
 - Solder joints close to the DC+ and DC- : Higher current density
 - Solder joints away from the DC+ and DC- : Lower current density

MTTF Evaluation: DC

Inter-die current density negligible

Temperature is dominant

- Hot spots: source-side solder bumps
- MTTF:
 - Lower: source-side solder bumps

MTTF Results

Electromigration-Aware Reliability Optimization of MCPM Layouts Using PowerSynth

Optimization Results

Approach 1: Floorplan area variation

- 10 floorplan sizes : 15 solutions/size (135 s/ layout solution)
- L: FastHenry, T: ParaPower, J: Z-Mesh tool.

• MTTF evaluation at DC

- Layout A: Highest temperature rise → lower MTTF
- Layout C: Lowest temperature rise → Higher MTTF
- Layout B: Balanced solution

Optimization Results

Approach 2: Fixed floorplan # of solder ball variation

• Minimum-sized solution: 58 mm × 31 mm

• Larger array size \rightarrow more even current distribution \rightarrow less density

	•			
****		OUT		
D1	D2		D3	D4
5 5 5 5 5 5 5 5 5 5 5 5		DC+ DO	****	

Case 1: 4 × 3 Array

	OUT		
D1	D2	D3	D4

Case 2: 5 × 4 Array

Case	Solder Array	Max J (A/cm²)	Max Temp. (°C)	MTTF	Improvement
1	4 × 3	4.86	62.43	1.19	×1
2	5 × 4	3.13	62.34	2.89	×2.4

Electromigration-Aware Reliability Optimization of MCPM Layouts Using PowerSynth

UNIVERS

Layout Solution Generation

Wire-bonded 2D module:

- Half-bridge module: Two SiC devices/switching position
- Three 5-mil AI wirebonds/device
- Embedded decoupling capacitor (C)
- Hardware validated parasitic extraction result
- Temperature distribution result from ParaPower

Parasitic Netlist

(from PowerSynth)

[1] Imam AI Razi et. al., "PowerSynth Design Automation Flow for Hierarchical and Heterogeneous 2.5D Multi-Chip Power Modules", IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 8919–8933, 2021.

Circuit

Simulation

Electromigration-Aware Reliability Optimization of MCPM Layouts Using PowerSynth

Failure Time Measurement Experiment

Wire Bonds EM Failure Experimental Setup

- Two DBC with four 5-mil Al wirebonds
- Accelerated test setup
 - Elevated ambient temperature using oven
 - Variable current densities
 - DATAQ voltage module
 - Resistance (R) change monitoring
 - Failure criteria: 10% increase in R

Results

Contour plot to represent aggregation of

- the current density through the wire bonds,
- the temperature of the wire bonds at that current density,
- the corresponding failure time (color bar)

UNIVERSITY O

ARKA

MTTF Results

Wire-bonded Module

Current Density Extraction

Supply current ~ 23 A

• Temperature

Measurement data from [1]

• Reliability Metric:

• 10% increase in R of the wire bond (from contour plot based on the experimental data)

Device	Current (A)	Temperature (K)	Wire Bond Current Density (A/cm ²)	EM Failure Time (Hr)
D1	11.53	416.8	3.03 ×10 ⁴	217.4
D2	11.26	416.5	2.95 ×10 ⁴	229.6
D3	11.55	427.0	3.03 ×10 ⁴	210.8
D4	11.24	427.7	2.95 ×10 ⁴	221.9

[1] Imam Al Razi et. al., "PowerSynth Design Automation Flow for Hierarchical and Heterogeneous 2.5D Multi-Chip Power Modules", IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 8919–8933, 2021.

Conclusions and Future Work

Conclusions:

- EM needs to be considered with multi-physics models and detailed layout
- Integrated fast and accurate models in PowerSynth2 for
 - Current density distribution
 - Temperature distribution
 - EM-aware MTTF estimation
- Both closed-form models and data-driven models are highly accurate with significant runtime improvement over FEM.
- Our EM-aware design automation flow can optimize both flip-chip and wire-bonded MCPM layouts with high accuracy and efficiency

Future Work:

- More accurate current and temperature distribution across the wire bonds
- Incorporating stress impact in the electromigration risk assessment model
- Validate the optimization results through experiments