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❑What is Electromigration (EM) ?

●A material migration based on the flow of current through it

●A diffusion-controlled process. 

●Accelerated by:
▪ High current density

▪ High temperature 

❑Why EM is a concern in Power Modules ?

●Recent trend toward high power density
▪ Increasing current density and temperature

●Reliability of the interconnects: Wire bonds, solder bumps
▪ Void formation: Open circuit

▪ Hillock formation: Short circuit
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❑Analytical & Experimental

●combined effect of high current and high temperature on Ag, Cu, and Au wire bonds [1]

●An electrical-thermal-mechanical coupled EM analysis in a bonding wire of a power 
module [2]

●Current density variation impact on wire bond resistance and die attach solder [3]

●Optimizing solder bump structure through solder bump parametric variation in [4]
▪ Solder material

▪ Solder bump diameter/pitch

▪ Geometry

●Solder bump distribution orientation variation for optimization [5]
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EM Risk Assessment Modeling Approaches

[1] P. Lall et. al., “Study of Electromigration in Cu and Ag Wirebonds Operating at High Current in Extreme Environments,” in IEEE iTherm, 2017 

[2] M. Kato et al., “Electromigration Analysis of Power Modules by Electrical-Thermal-Mechanical Coupled Model,” in ASME IMECE, Nov. 2019.

[3] H. Luo et al., “Study of Current Density Influence on Bond Wire Degradation Rate in SiC MOSFET Modules,” IEEE JESTPE, 2020.

[4] M. Montazeri et al., “Vertically Stacked, Flip-Chip Wide Bandgap MOSFET Co-Optimized for Reliability and Switching Performance,” IEEE JESTPE, 2021.

[5] C. Hau-Riege and Y. Yau, “Electromigration Reliability of Solder Balls,” in IEEE IPFA, 2018

All efforts are based on manual parameterization and experimental studies



❑Motivations

●No design automation effort for EM assessment

●High density power module optimization requires 
EM-aware reliability optimization

●Need EDA tools for EM-aware layout optimization

●Our solution: EM-Aware PowerSynth 2 [1]

❑Contributions

●Current density distribution for DC and AC

●A generic EM-aware risk assessment workflow
▪ Analytical

▪ Data-Driven
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●Case studies demonstration: Power module with solder bumps and wire bonds

●EM-aware electro-thermal optimization using PowerSynth 2

[1]  I. Al Razi et. al., “Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation,” ICCAD, 2021.



❑Architecture
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PowerSynth 2
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[1] PowerSynth Release Website: https://e3da.csce.uark.edu/release/PowerSynth/

https://e3da.csce.uark.edu/release/PowerSynth/


❑PowerSynth 2 allows:

●Integration external modeling efforts/tools through APIs
▪ ParaPower: Army Research Lab (ARL) developed thermal and stress evaluation tool

●Handling both types of interconnects (i.e., wire bonds and solder joints)

●Considering arbitrary layer stack

●Material library modification

❑To perform reliability optimization, it requires efficient, and accurate models

❑Currently, MCPM layouts can be optimized for two major reliability threats:

●Thermal cycling impact minimization [1]
▪ Transient thermal model for 2D MCPM layouts

▪ Phase change material (PCM) consideration

●Electromigration associated risk assessment
▪ Current density modeling through Z-Mesh tool
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Reliability Optimization Using PowerSynth

[1] Imam Al Razi, David Huitink, and Yarui Peng, “PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module”, APEC, 2021.

[2] ARL ParaPower, “https://github.com/USArmyResearchLab/ParaPower”.



❑Objectives:

●Quick assessment of  risks associated with electro 
migration (EM) and mechanical failure of 
interconnects.

●Optimize power module layout to reduce the risk of 
failure of interconnect.

❑Methodology

●Features to be considered:
▪ Layout generation capability with different 

interconnects

▪ Fast and accurate model for current density 
estimation through interconnects.

▪ Fast and accurate model for temperature and stress 
distribution
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❑Implementation using PowerSynth 2 APIs:

❑Mean Time To Failure (MTTF) Calculation :

●Closed-formula approach (Black’s Equation for Electromigration)

▪ where, A = constant, j = current density, Ea = Activation energy, T= Temperature 

●Data-Driven Model
▪ Look-up table from experimental results

▪ Parameter tuning on analytical models from experimental results
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Implementation Using PowerSynth 2 
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❑Zmesh model is derived based on a fast-and-accurate resistive mesh network 
modeling Rmesh tool, first developed to model IR-drop in 3D DRAM

●Validated against Cadence EPS with 103x runtime speed up using a DDR3 layout

●Extended to cover both DC and AC frequency for power electronics useage
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Zmesh Current Density Model

[1] Yarui Peng et al., “Design, Packaging, and Architectural Policy Co-Optimization for DC Power Integrity in 3D DRAM”, in Proc. Design Automation Conference, pp. 1–6, Jun 2015.



❑Layout Solution Generation

●Flip-Chip Design:
▪ Half-bridge module: Two SiC devices/switching position

▪ Source side is directly bonded

▪ Drain side is extended through metallic connector and bonded with solder balls.

❑Current Density: Z-Mesh tool

❑Temperature Distribution: ParaPower
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Case Study I
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❑Workflow

❑Performance Comparison
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Z-Mesh Modeling
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Results

Model Runtime (s) Speedup Memory (MB) Memory Reduction

ANSYS 310 ×1 10329 ×1

Z-Mesh 0.28 ×1107 513 ×20



❑Frequency Dependent Current Density

●At DC, intra-die current density variation is observed

●Frequency increases → loop impedance increases → inter-die current density 
variation increases
▪ Solder joints close to the DC+ and DC- : Higher current density

▪ Solder joints away from the DC+ and DC- : Lower current density
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Current Density Results
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❑MTTF Evaluation: DC

●Inter-die current density negligible

●Temperature is dominant
▪ Hot spots: source-side solder bumps

●MTTF:
▪ Lower: source-side solder bumps
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MTTF Results
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❑MTTF Evaluation: AC

●Critical: current density and temperature

●Frequency increases→ current density 
impact increases
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MTTF Results
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❑Approach 1: Floorplan area variation

●10 floorplan sizes : 15 solutions/size (135 s/ layout solution)

●L: FastHenry, T: ParaPower, J: Z-Mesh tool.

●MTTF evaluation at DC
▪ Layout A: Highest temperature rise → lower MTTF

▪ Layout C: Lowest temperature rise → Higher MTTF

▪ Layout B: Balanced solution
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Optimization Results
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❑Approach 2: Fixed floorplan # of solder ball variation

●Minimum-sized solution: 58 mm × 31 mm

●Larger array size → more even current distribution → less density
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Optimization Results

Case
Solder 

Array
Max J (A/cm2) Max Temp. (⁰C) MTTF Improvement

1 4 × 3 4.86 62.43 1.19 ×1

2 5 × 4 3.13 62.34 2.89 ×2.4
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❑Layout Solution Generation 

❑Wire-bonded 2D module:

●Half-bridge module: Two SiC
devices/switching position

●Three 5-mil Al wirebonds/device

●Embedded decoupling capacitor (C)

●Hardware validated parasitic 
extraction result

●Temperature distribution result 
from ParaPower

❑Current density extraction steps:
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Case Study II
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[1] Imam Al Razi et. al., “PowerSynth Design Automation Flow for Hierarchical and Heterogeneous 2.5D Multi-Chip Power Modules”, IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 8919–8933, 2021.
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Failure Time Measurement Experiment
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●Two DBC with four 5-mil Al wirebonds

●Accelerated test setup
▪ Elevated ambient temperature using oven

▪ Variable current densities

▪ DATAQ voltage module

◦ Resistance (R) change monitoring

▪ Failure criteria: 10% increase in R

❑Results

●Contour plot to represent aggregation of
▪ the current density through the wire bonds, 

▪ the temperature of the wire bonds at that current density, 

▪ the corresponding failure time (color bar)DUT in Oven
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❑Wire-bonded Module

●Current Density Extraction
▪ Supply current ~ 23 A

●Temperature
▪ Measurement data from [1]

●Reliability Metric:
▪ 10% increase in R of the wire bond (from contour plot based on the experimental data)
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MTTF Results

[1] Imam Al Razi et. al., “PowerSynth Design Automation Flow for Hierarchical and Heterogeneous 2.5D Multi-Chip Power Modules”, IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 8919–8933, 2021.

Device Current (A) Temperature (K)
Wire Bond Current 

Density (A/cm2)

EM Failure

Time (Hr)

D1 11.53 416.8 3.03 ×104 217.4

D2 11.26 416.5 2.95 ×104 229.6

D3 11.55 427.0 3.03 ×104 210.8

D4 11.24 427.7 2.95 ×104 221.9
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❑Conclusions:

●EM needs to be considered with multi-physics models and detailed layout

●Integrated fast and accurate models in PowerSynth2 for
▪ Current density distribution

▪ Temperature distribution

▪ EM-aware MTTF estimation

●Both closed-form models and data-driven models are highly accurate with significant 
runtime improvement over FEM.

●Our EM-aware design automation flow can optimize both flip-chip and wire-bonded 
MCPM layouts with high accuracy and efficiency

❑Future Work:

●More accurate current and temperature distribution across the wire bonds

●Incorporating stress impact in the electromigration risk assessment model

●Validate the optimization results through experiments
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Conclusions and Future Work


