

College of Engineering *Mixed-Signal Computer Aided Design Research Lab*

Paper No: S3P1

Placement and Routing for Power Module Layout

Tristan Evans, Prof. Yarui Peng, & Prof. Alan Mantooth University of Arkansas tmevans@uark.edu

Outline

- Motivation
- PowerSynth Introduction
 - Overview
 - Improvement
- Placement & Routing for Power Electronics
 - VLSI Inspiration
 - Force-Directed Placement
 - Grid-Based Routing
- Initial Results
- Conclusions and Future Work

Power Electronics is Everywhere

ELECTRIC GENERATION

MCPM Co-Design Challenges

Physical design of multi-chip power modules (MCPM) is time consuming and poses several challenges:

- Multi-domain nature of power electronic packaging necessitates consideration of materials and designs towards reduced:
 - Electrical parasitics for high performance devices
 - Temperature and mechanical stress for higher reliability

 Traditional design flows are iterative and require extensive use of computationally expensive finite element analysis (FEA)

PowerSynth Overview

- EDA tool for multi-chip power modules (MCPM)
- Multi-objective layout optimization
- Reduced order models
- Pareto-front of tradeoffs
- Design export

ELECTRONICS SOCIETY

Tristan M. Evans, Quang Le, Shilpi Mukherjee, Imam Al Razi, Tom Vrotsos, Yarui Peng, H. Alan Mantooth, "PowerSynth: A Power Module Layout Generation Tool," in *IEEE Transactions on Power Electronics*, vol. 34, no. 6, pp. 5063-5078, June 2019. doi: 10.1109/TPEL.2018.2870346 **Highlighted Paper**

PowerSynth Manufacturer Design Kit (MDK) and Technology Library

Layer Stack

- Input file describing layers and technologies
- Holds information pertaining to
 - Layer width, length, and thickness
 - Layer material properties

MDK and Design Rules and Checker (DRC)

- Input file containing technology-dependent design and processing rules
- Ensures feature sizing and component placement are within processing tolerance

Illustration of design rules pertaining to feature placement and minimum spacing

PowerSynth technology library wizard

PowerSynth Layout Engine

- Constraint aware, hierarchical layout engine
- Minimum trace gaps set by trace-to-trace potential difference
- Heterogeneous component support
- Fixed or minimum layout size capabilities

I. Al Razi, Q. Le, H. A. Mantooth, and Y. Peng, "Constraint-Aware Algorithms for Heterogeneous Power Module Layout Synthesis and Reliability Optimization." in 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2018, pp. 323-330.

Co-Design Example (1/2)

- Half bridge layout
- Loop inductance from DC+ to DC-
- 10 W power dissipation/die, 25°C backside temperature
- 230°C process temperature,
- -40°C minimum ambient temperature

Thermal Resistance (Wm⁻¹K⁻¹)

Tristan Evans, Shilpi Mukherjee, Yarui Peng, and H. Alan Mantooth. "Electronic Design Automation Tools and Considerations for Electro-Thermo-Mechanical Co-Design of High Voltage Power Modules." In IEEE Energy Conversion Congress and Exposition, 2020.

Layout performance metrics

Need more variation in starting-point layout designs

	Dimensions (mm)	Inductance (nH)	R _{TH} (Wm ⁻¹ K ⁻¹)	Stress (MPa)
Layout 1	40x30	9.93	0.204	556
Layout 2	74x34	7.23	0.206	704
Layout 3	96x51	9.26	0.203	816

PowerSynth Layout Synthesis Goals

EE

From Very Large-Scale Integration (VLSI) to Power Electronics (1/3)

ELECTRONICS SOCIET

VLSI vs. Power Layout Aspects

From VLSI to Power Electronics (2/3)

2

From VLSI to Power Electronics (3/3)

- Mature field of VLSI offers numerous techniques and algorithms to draw from
- Two broad topics considered:
 - Placement
 - Routing

Expected Outcomes:

- Reduced design time
- Variation in starting-point layouts
- Expanded solution space

Power Module Place-and-Route

Step 3: Route Traces and Add Wirebone Connection

Annotated Netlist Input

- Specification of additional parameters for aiding layout synthesis
- Properties include:
 - Terminal names as nodes with locations specified
 - Overall footprint
 - Units
 - Device Kelvin connection
- Parsed netlist used for placement and routing

M1 DC_Pos G_High Our K_High NMOS M2 DC_Pos G_High Our K_High NMOS					
M3 Out G_Low DC_Neg K_Low NNOS					
M4 Out G_Low DC_Neg K_Low NNOS					
.model NMOS NMOS					
.model PMOS PMOS					
*units: mm					
*footprint: w=152.0, l=62.0					
*terminal: DC_Pos, x=50.67, y=7.75					
*terminal: DC_Neg, x=101.33, y=7.75					
*terminal: Out, x=76.0, y=54.25					
*terminal: G_High, x=25.33, y=31.0					
*terminal: K_High, x=12.67, y=31.0					
*terminal: G_Low, x=126.67, y=31.0					
*terminal: K_Low, x=139.33, y=31.0					
.end					

Half-bridge annotated netlist example

Force-Directed Placement

Spring Force Assignment

Attractive Forces	Repulsive Forces
Device-Device (in-group)	Device-Device (out-group)
Device-Terminal (connected)	Device-Boundary

Design Variables:

- Initial device position
- Mass
- Damping
- Spring coefficients
- Spring rest length

Governing Equations:

Attractive: $F = -k\Delta s$

Repulsive: $F = -k \log\left(\frac{\Delta s}{c}\right)$

Ref:

Neil R. Quinn, Melvin A. Breuer, "A Forced Directed Component Placement Procedure for Printed Circuit Boards," IEEE Transactions on Circuits and Systems, 26(6):377-388 1979

Force Directed Placement Example

Grid-Based Routing

Data: Layout as a 2D grid with cells initialized for routing **Result:** Power and signal trace routing solution for given layout initialization;

```
for cell in grid.cells \mathbf{do}
```

```
if cell.locked = True then
```

```
for neighbor in cell.neighbors do
if neighbor.group == None then
|

|
neighbor.group = cell.group;
else

|
continue;
|
```

```
end end
```

```
end
```

```
end
```

Algorithm 1: Simplified breadth-first search trace routing algorithm

Breadth-first search of neighboring cells during grid-based routing

Routing Example

Initial Results Example

Design Variations

Place-and-route results

DC_Pos DC_Neg Layout 1 M1 M6 M5 MЗ M4 <mark>G_Hig</mark>h G_Low M2 Out DC_Neg DC_Pos Layout 2 M2 M6 M4 M1 Μ5 G_High M3 G_Low Out

Initial layout in PowerSynth

Caveats and Future Work

Limitations

- Many assumptions have been made, including:
 - Planar, 2D structures
 - Vertical devices
 - Bondwire overlap
- Prototype implementation
 - Not optimized for speed
 - Naïve
- Further Development
 - Validate hypothesis with case studies
 - Fully automate export
 - Expand capabilities into multi-layer, heterogeneous structures

Summary

- PowerSynth is an EDA tool for power module layout under active development
- PowerSynth models and optimization results have been validated, but more work needs to be done to expand the solution space it produces
- VLSI techniques have been applied toward the placement and routing of components from a netlist starting point
- These features will be incorporated in PowerSynth and case studies performed to evaluate and refine the approach

Thank you!

