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Power Electronics is
Everywhere !
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2D-2.5D-3D Layout Definition

 Definition under PowerSynth scope: | — L|
_ : : : [ | == A B o X |

— 2D layout: One device layer with routing layers on | out | | out |

|Half bridge] | Half bridge|

the same substrate | 1 00 L |

. . . | — = e M El—

— 2.5D layout: Multiple 2D designs connected on a | o |
supporting 2D plane T oo J'

— 3D layout: Multiple device layers stacked vertically  Circuit schematic of a full-bridge module
on the same substrate
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MCPM traditional design flow ECCE:
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“The MCPMs traditional design flow
involves many different computationally
expensive tools in the process”




PowerSynth Overview
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EDA tool for multi-chip power modules
(MCPM)

Multi-objective layout optimization
Reduced order models

Pareto-front of tradeoffs

Design export
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 Wide band-gap devices operate at high frequency, and et =
high voltage and currents:

— High voltage overshoot
— Higher switching losses
« Layout parasitic analyses need to be done during design
states:
— FEA simulations
— FastHenry

Motivation

These analyses are accurate, but very time consuming and therefore not
suitable for a layout optimization process
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Previous approach in PowerSynth 2 m

PEEC approach:

« Fast and accurate for most 2D layout cases

* Response surface methodology.

However:

 Huge number of elements when going to more complicated layout

« Hard for post layout circuit simulation study since the netlist size is
large
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New loop-based modeling approach:
 Efficient mutual inductance calculation
 Divide and conquer strategy during evaluation
* Less elements in the extracted netlist > more suitable for time domain circuit simulation
« Have been proven to be efficient in VLSI
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Methodology

Modeling methodology:

— Path finding algorithm has been used
to define the return paths.

— Directed graph stores the information
of the path

— The layout can be divided in multiple
Horizontal and Vertical bundles

— Each bundle’s parasitic result is
evaluated separately using matrix
calculations

— Combined solutions to solve for the
final result

_________
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Simple Wire Mesh
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Find All Paths
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Bundle Creation
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Combine and Solve for Loop »

_______

10



Layout Engine API

» Layer Stack
* Design Constraints
» Layout Geometry Script

Electrical Model API

.

f

Hierarchical, Constraint-
Aware Layout Engine

Layout Solutions Browser
(Connectivity,
components group,
hierarchy)
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« Converts Layout information into
geometrical data used in the
electrical model.

» Ensure the correct hierarchical
connection among electrical
components.



Example layout cases ECEE:
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A 3D Half-bridge module (a) 3D view of
MCPM layout example (b) Layouts of

bottom (L1) and top (L2) layers.
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(a) Digraph formation for half-bridge (b) Horizontal bundles (c) Vertical bundles.
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Loop-Based Parasitic Extraction ECCE:

IEEE ENERGY CONVERSION CONGRESS & EXPO

20PN

Vancouver, Canada £0ct. 10-14

Key equations:

X B(,)) Zii Zia - Z
Pa=u 1 V., == _~"77 4 1,1 1,2 1,n
D) out Ya () p Ly Zpp -0 Zap
PB=M (2 1 —| S :
Zloopi = (MT X I) (5) .
Zn,l Zn,2 Zn,n
1) =B() = Voue xa  (3) |
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Z; is evaluated for each bundle. The final loop result from: AI=V  (6) 7 7 7
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Model Validation Results ECEE:
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- Extraction results show less than 7% error compared to FastHenry extraction 2 O m
using both PEEC and loop-based methods. | o BB
« The formulation time is similar to the PEEC method. o e mR
* The loop-based method shows up to 800x speed up for matrix evaluation in the
second layout case.
« The netlist size from the loop-based method is much smaller than that of PEEC

Layout Case Methods L Loop_(NH) Run Time (s) Netlist size | Speed up Error
Formulation Evaluation Total Time
Layout 1 FastHenry 17.3 8 1
PEEC 16.1 0.5 0.345 0.8345 1820 9.6x 6.9%
This work 16.5 0.42 1.4m 0.434 9 18.6x 4.6%
Layout 2 FastHenry 15.3 22.9 1
PEEC 14.5 1.3 2 3.3 32310 11.5% 5%
This work 15.6 0.26 2.5m 0.285 18 82 1.9%
Layout 3 FastHenry 7.93 25 1
This work 8.54 0.8 2.43m 0.824 50 30x 7.1%
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Layout Optimization Results
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Liyop (NH) | Max Temp. (°C) | Area (mm?)
A | 15.7 58.4 30 x 35
B |15.5 54.2 40 x 35
C |16.8 504 45 x 42
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Validation of the Optimization Capability E‘W}CE

Vancouver, Canada £0ct. 10-14

1.02
0 1
e 098 1 \
£ 0.96 } .
U .
= |
g o\ AN P . | _
5 092\ N _ '. L A i v « 50 layouts with the same design footprint of
9 o9 | “ \ | 'R 30X 35 (mm?) in the solution space are
5 088 \ ‘i ' /U evaluated
N 086 ‘ ' * Normalized inductance result is used for
Té’ 0.84 comparison
o 08 * The loop-based method shows the same
= ’ " - g * ” trend while having a 2% average error
——FastHenry ——Loop Layout ID ren g 0 g '

Optimization trend comparison

17



IECCE

IEEE ENERGY CONVERSION CONGRESS & EXPO

Vancouver, Canada £0ct. 10-14

Conclusion and future works

Conclusion

* A new loop-based technique for inductance extraction in power module
layout has been demonstrated

» Fast and accurate, suitable for the layout optimization objective

« Works for both 2D and 3D layouts cases

In the future:

* More work needs to be done to improve the bundle creation algorithms for
3D layout

« Consideration of vias, solder ball array for 3D layout cases

18



QOO0®

Thank you !
Question ?
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