

Fast and Accurate Inductance Extraction for Power Module Layout Optimization Using Loop-Based Method

Quang Le¹, Imam Al Razi², Yarui Peng², H. Alan Mantooth¹

¹Electrical Engineering Department ²Department of Computer Science and Computer Engineering

Outline

- Overview
 - Traditional design flow
 - PowerSynth (an EDA tool) Introduction
- Motivation
- Methodology
 - Loop-based parasitics extraction
- Results
 - Accuracy and Performance comparison among different models
 - Optimization study
- Conclusions and Future Works

2D-2.5D-3D Layout Definition

- 2D layout: One device layer with routing layers on the same substrate
- 2.5D layout: Multiple 2D designs connected on a supporting 2D plane
- 3D layout: Multiple device layers stacked vertically on the same substrate

Circuit schematic of a full-bridge module

MCPM traditional design flow

"The MCPMs traditional design flow involves many different computationally expensive tools in the process"

PowerSynth Overview

- EDA tool for multi-chip power modules (MCPM)
- Multi-objective layout optimization
- Reduced order models
- Pareto-front of tradeoffs
- Design export

Motivation

- Wide band-gap devices operate at high frequency, and high voltage and currents:
 - High voltage overshoot
 - Higher switching losses
- Layout parasitic analyses need to be done during design states:
 - FEA simulations
 - FastHenry

These analyses are accurate, but very time consuming and therefore not suitable for a layout optimization process

Vancouver, Canada Oct. 10-14

Previous approach in PowerSynth

PEEC approach:

- Fast and accurate for most 2D layout cases
- Response surface methodology.

However:

- Huge number of elements when going to more complicated layout
- Hard for post layout circuit simulation study since the netlist size is large

Loop-Based Parasitic Extraction

Vancouver. Canada ≌Oct. 10-14

New loop-based modeling approach:

- Efficient mutual inductance calculation
- Divide and conquer strategy during evaluation
- Less elements in the extracted netlist \rightarrow more suitable for time domain circuit simulation
- Have been proven to be efficient in VLSI

Methodology

Modeling methodology:

- Path finding algorithm has been used to define the return paths.
- Directed graph stores the information of the path
- The layout can be divided in multiple Horizontal and Vertical bundles
- Each bundle's parasitic result is evaluated separately using matrix calculations
- Combined solutions to solve for the final result

Layout Engine API

- Converts Layout information into geometrical data used in the electrical model.
- Ensure the correct hierarchical connection among electrical components.

Fast and Accurate Inductance Extraction for Power Module Layout Optimization Using Loop-Based Method

Example layout cases

A 3D Half-bridge module (a) 3D view of MCPM layout example (b) Layouts of bottom (L1) and top (L2) layers.

35

30

25

20

DC-

2D layout for optimization study

Evaluation for each bundle

Simple layout case to demonstrate the bundle creation process

EEE ENERGY CONVERSION CONGRESS & EXPO

Fast and Accurate Inductance Extraction for Power Module Layout Optimization Using Loop-Based Method

Loop-Based Parasitic Extraction

Key equations:

$$Pa = u \qquad (1) \qquad V_{out} = \frac{\sum B(i,j)}{\sum a} \qquad (4)$$
$$PB = M \qquad (2) \qquad Z_{loopi} = (M^T \times I)^{-1} \qquad (5)$$
$$I(j) = B(j) - V_{out} \times a \qquad (3)$$

$$Z_i$$
 is evaluated for each bundle. The final loop result from: $AI = V$ (6)

$$(a) \qquad (b) \qquad (c)$$

(a) Digraph formation for half-bridge (b) Horizontal bundles (c) Vertical bundles.

$$\mathbf{P} = \begin{pmatrix} Z_{1,1} & Z_{1,2} & \cdots & Z_{1,n} \\ Z_{2,1} & Z_{2,2} & \cdots & Z_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{n,1} & Z_{n,2} & \cdots & Z_{n,n} \end{pmatrix}$$
$$Z_{i,j} = R_{ij} + j\omega L_{ij}$$

$$\mathbf{A} = \begin{pmatrix} Z_{loop_{1,1}} & Z_{loop_{1,2}} & \cdots & Z_{loop_{1,k}} \\ Z_{loop_{2,1}} & Z_{loop_{2,2}} & \cdots & Z_{loop_{2,k}} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{loop_{k,1}} & Z_{loop_{k,2}} & \cdots & Z_{loop_{k,k}} \end{pmatrix}$$

14

Model Validation Results

- Extraction results show less than 7% error compared to FastHenry extraction using both PEEC and loop-based methods.
- The formulation time is similar to the PEEC method.
- The loop-based method shows up to 800× speed up for matrix evaluation in the second layout case.
- The netlist size from the loop-based method is much smaller than that of PEEC

Layout Case	Methods	LLoop (nH)	<u>Run Time (s)</u>			<u>Netlist size</u>	Speed up	Error
			Formulation	Evaluation	Total Time			
Layout 1	FastHenry	17.3			8	1		
	PEEC	16.1	0.5	0.345	0.8345	1820	9.6×	6.9%
	This work	16.5	0.42	1.4m	0.434	9	18.6×	4.6%
Layout 2	FastHenry	15.3			22.9	1		
	PEEC	14.5	1.3	2	3.3	32310	11.5×	5%
	This work	15.6	0.26	2.5m	0.285	18	82×	1.9%
Layout 3	FastHenry	7.93			25	1		
	This work	8.54	0.8	2.43m	0.824	50	30×	7.1%

Vancouver, Canada Oct. 10-14

Layout Optimization Results

Vancouver, Canada ≌Oct. 10-14

	L _{loop} (nH)	Max Temp. (° <i>C</i>)	Area (mm^2)
Α	15.7	58.4	30×35
В	15.5	54.2	40 × 35
С	16.8	50.4	45×42

Validation of the Optimization Capability

Vancouver, Canada ≌Oct, 10-14

Optimization trend comparison

- 50 layouts with the same design footprint of $30 \times 35 \ (mm^2)$ in the solution space are evaluated
- Normalized inductance result is used for comparison
- The loop-based method shows the same trend while having a 2% average error.

Conclusion and future works

Conclusion

- A new loop-based technique for inductance extraction in power module layout has been demonstrated
- Fast and accurate, suitable for the layout optimization objective
- Works for both 2D and 3D layouts cases

In the future:

- More work needs to be done to improve the bundle creation algorithms for 3D layout
- Consideration of vias, solder ball array for 3D layout cases

<u>qmle@uark.edu</u>