

Design, Extraction, and Optimization Tool Flows and Methodologies for Homogeneous and Heterogeneous Multi-Chip 2.5D Systems

MD Arafat Kabir

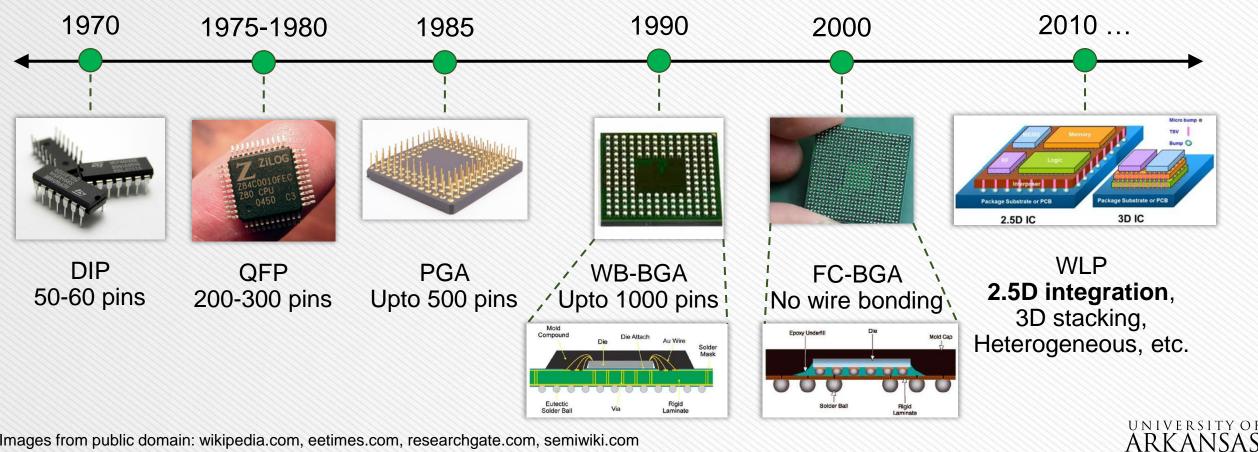
Thesis Committee:

Prof. Yarui Peng (Chair) Prof. David Andrews Prof. Alexander Nelson

🕋 +1 (479) 301-1293

🔜 https://e3da.csce.uark.edu

🖂 makabir@uark.edu



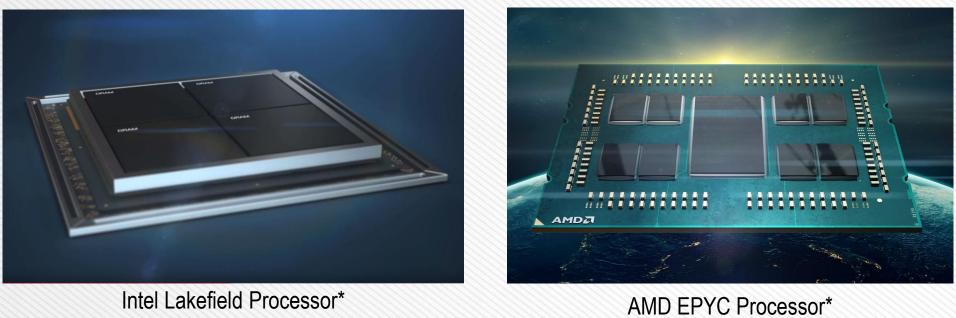
Brief History of IC Packages

Evolution of IC packaging

- Initially, development was driven by pin-count
- Now, driven by performance, power, bandwidth, etc.

Images from public domain: wikipedia.com, eetimes.com, researchgate.com, semiwiki.com

10/27/2022


2.5D Systems Today

2.5D : multiple dies in a single package

Package becomes increasingly critical in post-Moore's Law era

- Better performance, bandwidth, power, yield, compact size
- Novel design techniques
- Heterogeneous integration capabilities
- Supports large systems

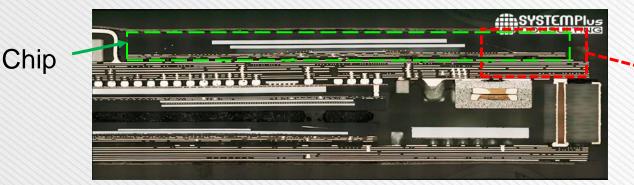
*From public domain

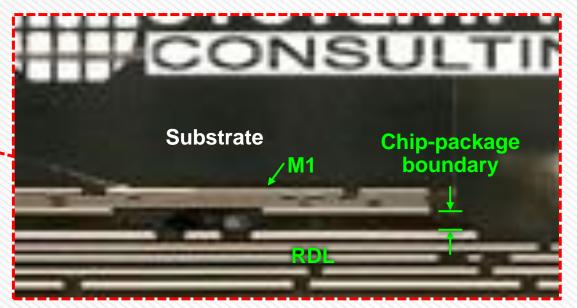
$\hfill \square$ No standard tool flow exists

Existing work

• Flows for IP-reuse and active interposer

- RDL routing methodologies
- PDN and thermally-aware flows
- Flows for IP security: obfuscation


Die-by-die flow: chip-package cross-boundary interactions are ignored


Thin Dielectric Between Chip and Package

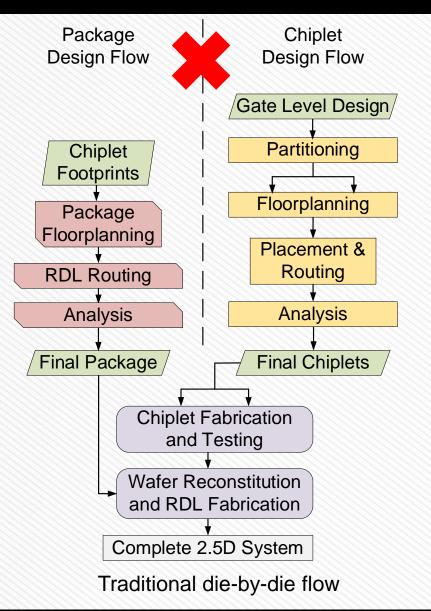
□ Significant coupling between chip and package layers are expected

Apple A11 using TSMC's InFO*

This image was published in 2018!

*From public domain

10/27/2022


Need For Cross-Boundary Flow

Chip-package gap decreasing

InFO UHD: 1.5um (approx.)

□ Mainstream flow: die-by-die

ASIC-CAD compatible cross-boundary flow frameworks

- Compatible with existing tools
- Chiplet-package cross-boundary design and optimization

System-level iterative optimization

- □ Handling homogeneous and heterogeneous 2.5D systems
- □Agile customization techniques

□ Holistic flow for homogeneous 2.5D systems

- A framework for cross-boundary flow
- Agile customization techniques
- Silicon validation

□ In-context flows for heterogeneous systems

- A scalable per-chiplet in-context flow
- A highly accurate per-technology in-context flow
- A timing-accurate scalable in-context flow

Package inductance-aware system-level timing optimization flow

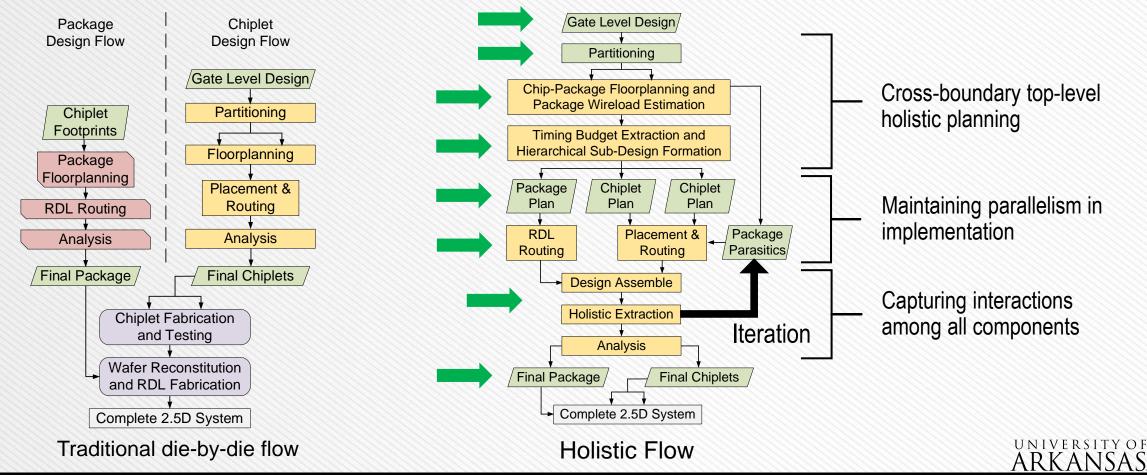
Holistic Flow for High-Performance Systems

Designed for homogeneous systems

- Chipletization benefits
- System-level performance and reliability
- Better bandwidth, power, form-factor, etc.

Comparable to 2D and traditional 2.5D flows

Provides reference designs

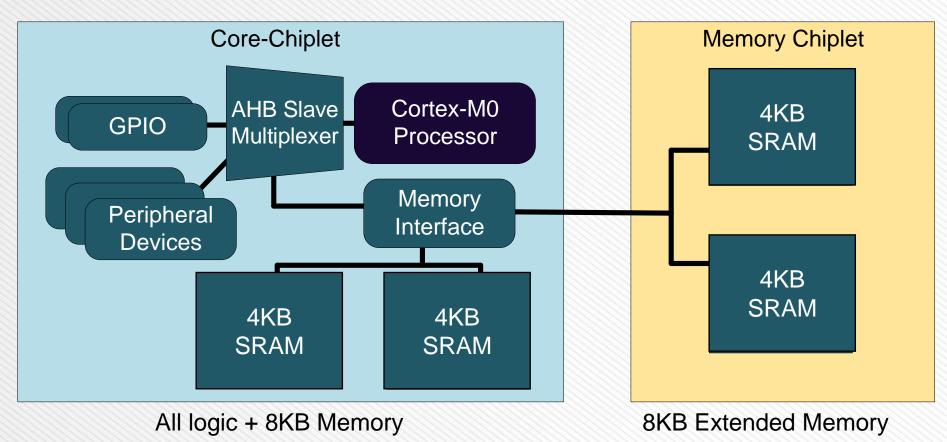


The Holistic Flow

Exchange of cross-boundary design information in planning, design, analysis, and optimization steps

10/27/2022

Design, Extraction, and Optimization Tool Flows and Methodologies for Multi-Chip 2.5D Systems

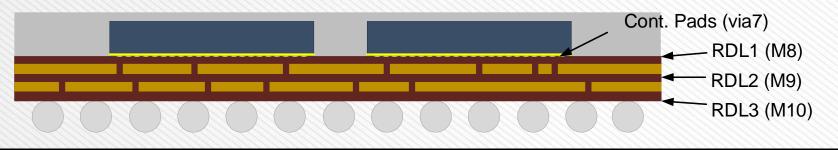

10

Microcontroller system based on ARM Cortex-M0 core

- 16KB RAM: 4x4KB banks
- Peripheral devices: GPIO, UART, timers, etc.

10/27/2022

UNIVERSITY OF ARKANSAS


TSMC 65nm used as the PDK

• M1-M7 used for chiplet routing

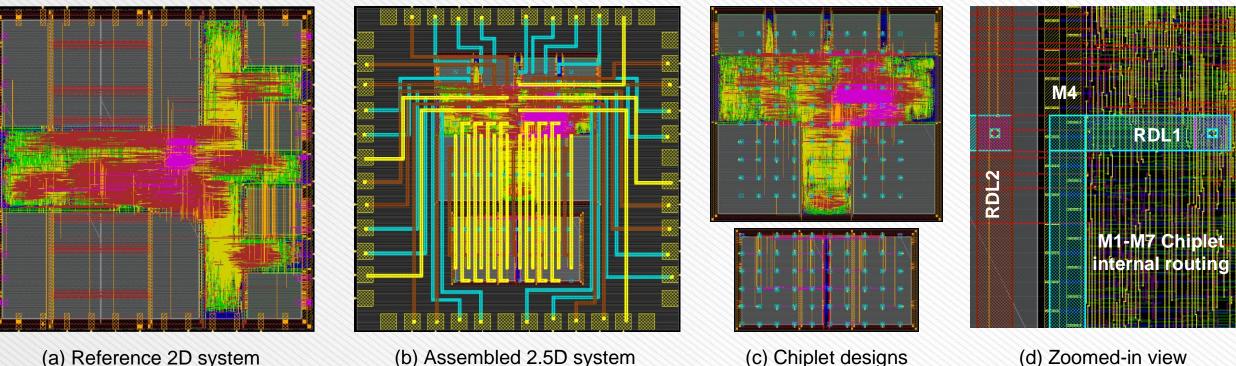
□ Top three layers modified to include 2.5D package RDLs

Similar to the TSMC 2.5D InFO technology

Layer	Purpose	Width	Spacing	Thickness	Epsilon
M1-M7	Chip Internal Routing	TSMC	TSMC	TSMC	TSMC
ILD7	Inter-layer Dielectric	-	-	5 um	2
M8	RDL1	10 um	10 um	5 um	2.2
ILDR1	Inter-layer Dielectric	-	-	5 um	2
M9	RDL2	10 um	10 um	5 um	2.2
ILDR2	Inter-layer Dielectric	-	-	5 um	2
M10	RDL3	10 um	10 um	5 um	2.2

Design, Extraction, and Optimization Tool Flows and Methodologies for Multi-Chip 2.5D Systems

UNIVERSITYO


ARKA

Physical Design for Case Study

Different versions of the MCU implemented for comparative study

(a) Reference 2D system

(b) Assembled 2.5D system

(d) Zoomed-in view

Holistic Extraction Captures Interactions

Detailed chiplet-package coupling capacitance is captured

- Chiplet-package coupling not captured in die-by-die flow
- M7-RDL coupling < M6-RDL coupling

less overlap on M7, M6-RDL1 runs in parallel

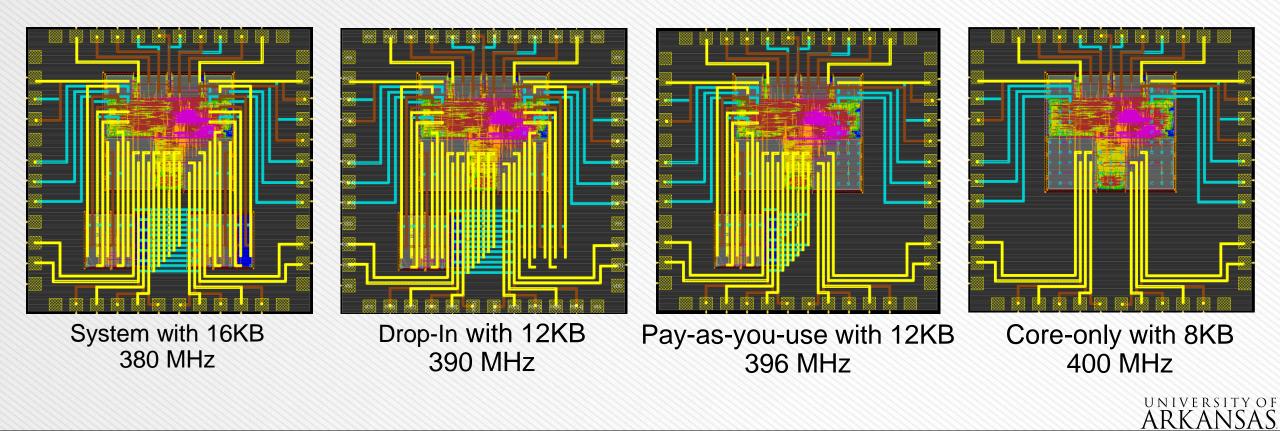
	Coupling Capacitance (CCAP)									
Metal Layer	M1-M5	M6	M7	RDL1	RDL2	RDL3				
M1-M5	16348	222.5	446.7	195.3	18.61	10.18				
M6	222.5	137.1	32.81	51.7	4.168	2.149				
M7	446.7	32.81	371.1	32.43	1.459	1.891				
RDL1	185.3	51.70	32.43	65.67	399.3	11.19				
RDL2	18.61	4.168	1.459	399.3	103.3	390.5				
RDL3	10.18	2.149	1.891	11.19	390.5	115.3				

Ground Capacitance (GCAP)								
Metal Layer	M1-M5	M6	M7	RDL1	RDL2	RDL3		
Capacitance	31842	1526	477	853	251	420		

10/27/2022

Package overhead compensated by 85%

Design Case	Chiplet Design	Logic Gates#	Buffer/ Inverter#	Die Size (um²)	M6 WL (mm)	M7 WL (mm)	Power (mW)	Freq. (MHz)	Freq. Overhead
Case-1	2D Chip	24141	4760	600 x 600	15.13	8.562	20.1	400	0%
C 2 2 2	Core	23933	4684	520 x 475	12.98	19.08	18.4	366	100%
Case-2	Mem	20	20	415 x 230	2.847	1.991	2.50	300	100 %
Case-3	Core	23918	4634	520 x 475	13.6	18.12	18.2	294	47.05%
initial	Mem	15	15	415 x 230	4.052	2.312	2.57	- 384 47 .	47.05%
Case-3	Core	23909	4653	520 x 475	11.86	17.44	18.2	- 395	14.70%
final	Mem	0	0	415 x 230	4.579	3.264	2.57	395	14.70%



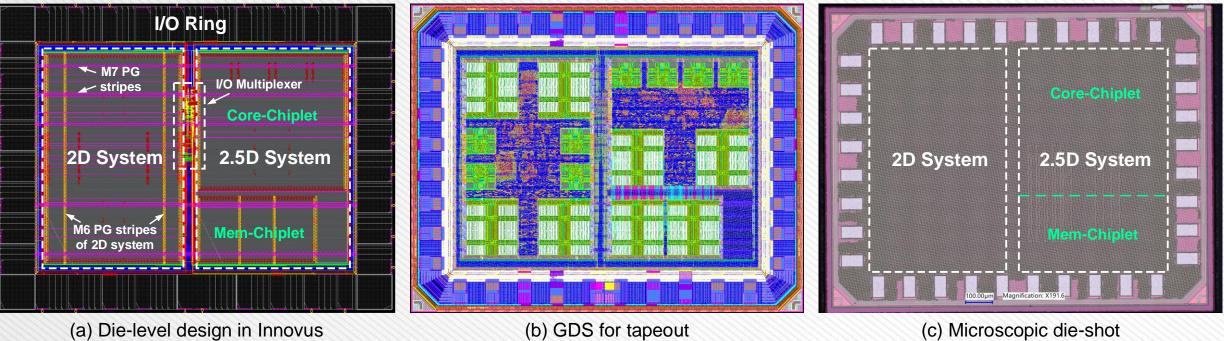
Agile Customizations

□ Holistic flow offers flexible customizations

• Very little design effort

Design, Extraction, and Optimization Tool Flows and Methodologies for Multi-Chip 2.5D Systems

16

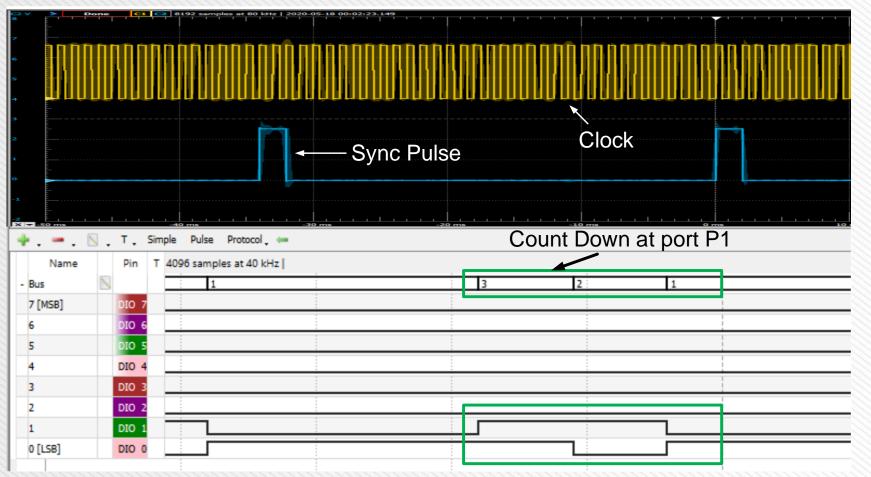


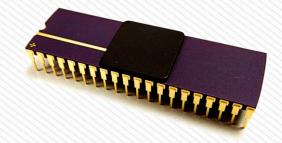
Silicon Validation

Dual system shared-block tape-out in TSMC 65

• Shares I/O system: I/O multiplexer module

(c) Microscopic die-shot





Functional Verification

Functional verification using logic analyzer

DIP packaged die

Testing waveforms at the logic analyzer

10/27/2022

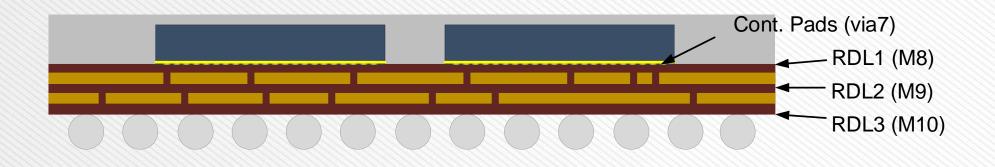
Heterogeneous: Chips from different technology

□ Holistic flow cannot handle heterogeneity with existing toolset

Existing tools do not support heterogeneous tech. stack

In-Context design and analysis for heterogeneous systems

- Package planning with blackbox macros
- In-context partition
- Separate tech. stack for each partition


Technology Setup for Case Study

Modified versions of Nangate45nm PDK

- •7M3R: 7 chip + 3 package
- 6M3R: 6 chip + 3 package

	M6	via6	M7	via7	RDL1	viar1	RDL2	viar2	RDL3
Height	2.28	3.08	3.9	7.5	12.5	17.5	22.5	27.5	32.5
Thickness	0.8	0.82	3.6	5	5	5	5	5	5
Width	0.4	0.4	2	5	10	10	10	10	10
Spacing	0.4	0.44	2	10	10	20	10	20	10

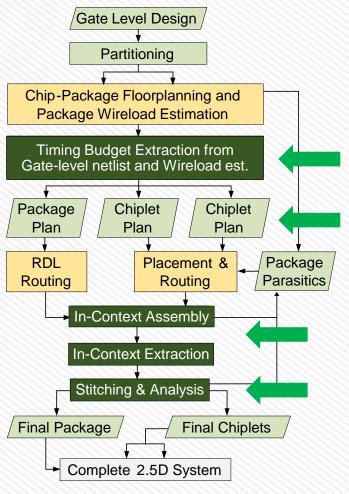
Reference Holistic Designs in 45nm PDK

□ Holistic designs are re-implemented in the new setup

- For direct comparison with in-context designs
- Using the 7M3R stack
- Package overhead reduction by 63%

Design Case	Chiplet Design	Logic Gates#	Buffer/ Inverter#	Die Size (um²)	M6 WL (mm)	M7 WL (mm)	Power (mW)	Freq. (MHz)	Freq. Overhead
Case-1	2D Chip	17595	3700	550x550	79.94	0	10.6	333	0%
C	Core	17783	2740	390x590	30.81	1.783	7.751	04E	100%
Case-2	Mem	132	132	350x470	5.986	0.598	0.194	— 245	100%
Case-3	Core	17915	2865	390x590	31.86	1.875	9.043	. 280	60.23%
initial	Mem	148	148	350x470	8.201	0.589	0.216	- 280	
Case-3	Core	18214	2955	390x590	31.42	2.02	9.840	200	27 500/
final	Mem	45	45	350x470	8.445	0.624	0.162	- 300	37.50%

10/27/2022



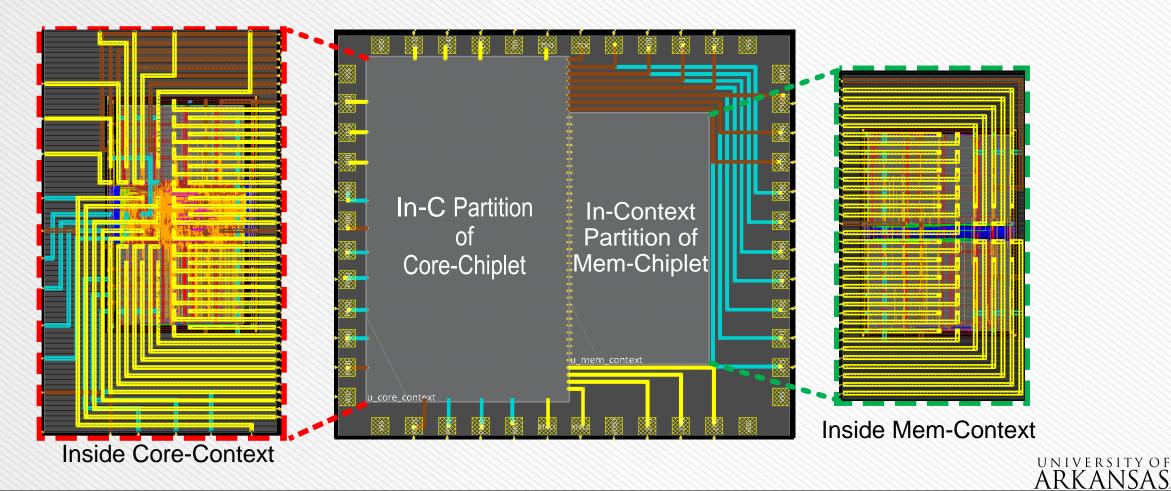
Per-Chiplet In-Context Flow

Direct modification of the holistic flow

- Timing budgets from gate-level netlist
- Create package contexts
- In-Context assembly
- Extraction on in-context assembly
- Stitching parasitic netlist
- System-level analysis and optimization

In-Context Flow

UNIVERSITY OF


ARKA

In-Context Partitions

An extra level in the design hierarchy for extended partition

10/27/2022

Design, Extraction, and Optimization Tool Flows and Methodologies for Multi-Chip 2.5D Systems

23

Captures Cross-Boundary Coupling

Extraction comparison

- All coupling captured like holistic
- Reasonable accuracy in coupling
- Overestimated ground cap
 - Fringe caps at cutting edges

Comparison of Extraction result w.r.t. Holistic

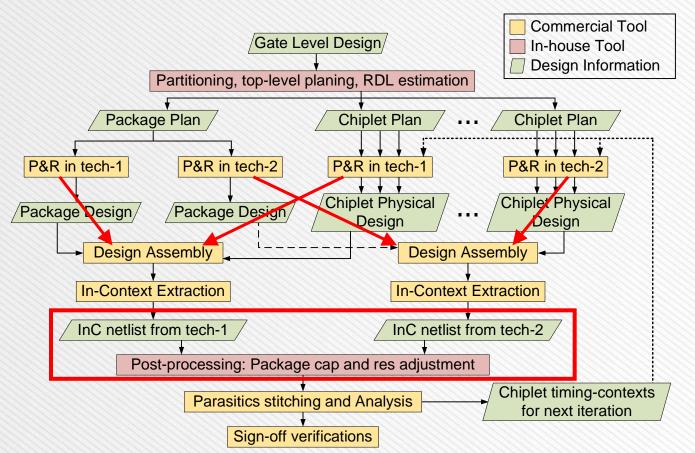
Μ	etal Layer	M1-M5	M6	M7	R1	R2	R3
ď	Holi	9172	1263	156	1544	2421	1721
CCAI	InC	9171	1265	153	1563	2489	1765
Ŭ	InC Err	-0.01%	0.17%	-2.10%	1.20%	2.81%	2.56%
٩	Holi	21119	2054	272	1040	247	636
GCAI	InC	21119	2053	273	1103	306	696
	InC Err	0.00%	-0.01%	0.09%	6.03%	24.0%	9.46%

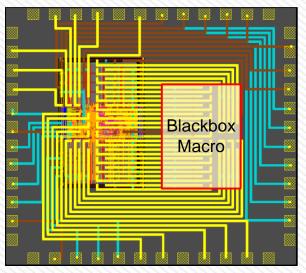
Performance comparison

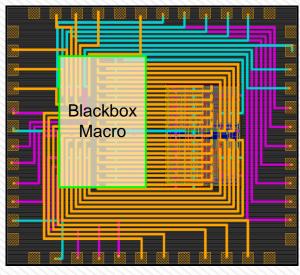
- Effective iterative optimization
- Performance comparable to holistic implementations

Iterative optimization result

Design iteration	LPD (ns)	In-C Perf	Holi Perf
with RDL wireload	3.55	281 MHz	280 MHz
In-Context 1st iteration	3.35	298 MHz	-
In-Context 2nd/final	3.35	298 MHz	300 MHz




Per-Technology In-Context Flow


Avoid cutting the package

- Assemble all chiplets of same technology
- Post-processing to fix double-counting

(a) Assembled Core-Context (7M3R)

(b) Assembled Mem-Context (6M3R) ARKANSAS

Post-Processing Methodology

Package layer cap is reduced by a fraction of top-only extraction numbers

- Top-only extraction: all chiplets as blackbox
- CapRDL: RDL cap from in-context extraction
- TCapRDL: Extraction on package only
- userFact: provided by the designer
- Cap nodes of a net multiplied with layerFact_x of that layer

$$layerFact_{x} = \frac{CapRDL_{x}}{CapRDL_{x}} - \frac{userFact \times TCapRDL_{x}}{CapRDL_{x}}$$
(1)
$$newNodeCap = nodeCap \times layerFact_{x}$$
(2)

Improved Extraction Accuracy

Extraction comparison

- All coupling captured like holistic
- Very high accuracy: 100% approx.
 GCAP and CCAP

Performance comparison

• Homogen: 7M3R + NG

- Heterogen with two stacks and lib
 - Core: 7M3R + NG
 - Mem: 6M3R + GSCL (FreePDK)

Major concerns

- Scalability
- Empirical param: userFact

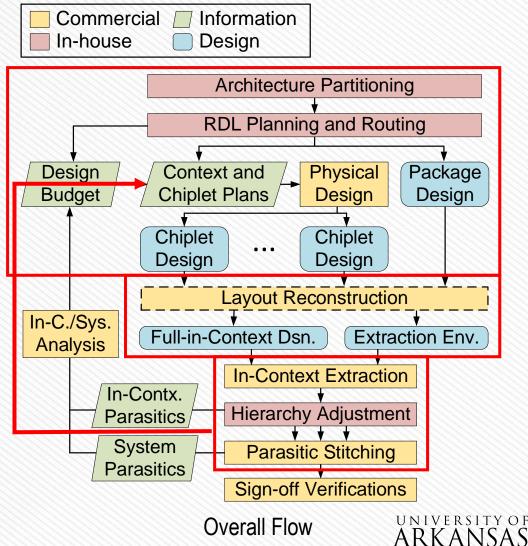
Comparison of	Extraction	result w.r.t.	Holistic
---------------	------------	---------------	----------

	Metal Layer	M1-M5	M6	M7	R1	R2	R3
AP	Holi	21605	2161	284	1032	219	513
	InC	21605	2162	284	1034	220	513
C C D	Err (per-tech)	0.00%	0.00%	0.01%	0.24%	0.6%	0.00%
•	Err (per-chip)	0.00%	-0.01%	0.09%	6.03%	24.0%	9.46%
	Holi	8988	1292	203	1553	2412	1648
АP	InC	8989	1291	202	1553	2412	1648
CCAP	Err (per-tech)	0.00%	0.04%	0.64%	0.03%	-0.01%	0.00%
	Err (per-chip)	0.01%	0.17%	-2.10%	1.20%	2.81%	2.56%

Iterative optimization result

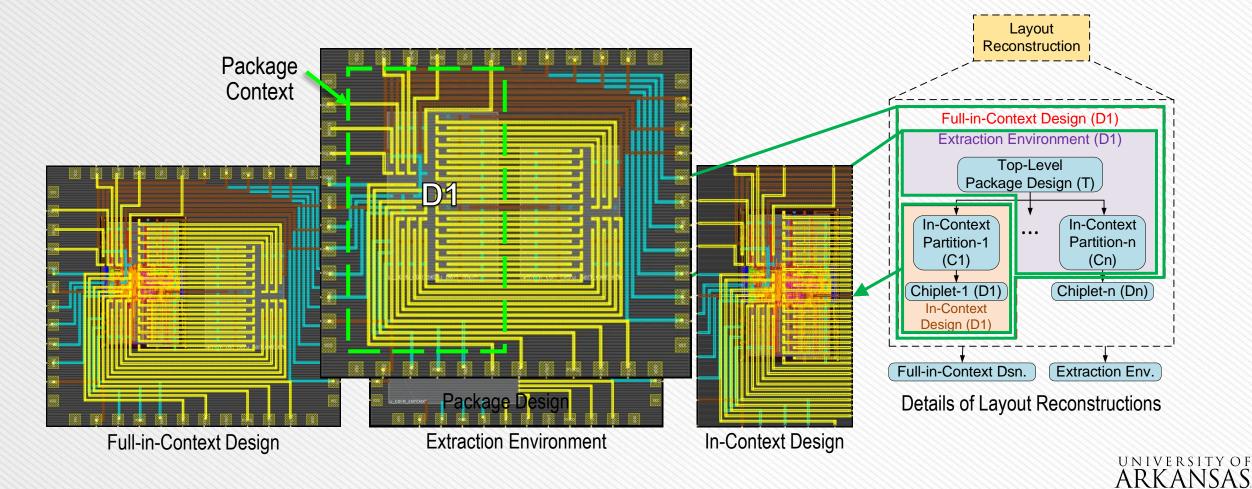
Design	Homog	eneous	Heterogeneous		
Iteration	Holistic	In-Context (per-tech)			
Initial	288 MHz	288 MHz	287 MHz		
1st iteration	293 MHz	294 MHz	294 MHz		
2nd/final iteration	300 MHz	300 MHz	300 MHz		
			ARKANSA		

10/27/2022



Timing-Accurate In-Context Flow

Takes advantage of the flip-chip extraction flow to perform in-context extraction

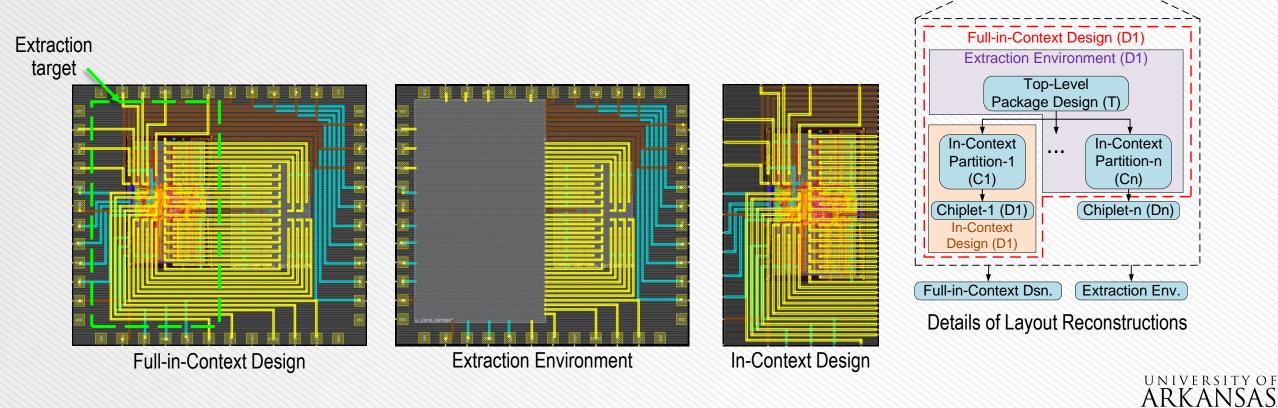

- Planning and physical design: previous flows
- Layout reconstruction
 - Not cutting the package
 - Not extracting the entire package
- in-context extraction on each chiplet
- Hierarchy adjustment before parasitics stitching
- In-C/Sys. Analysis and verification
- Iterative optimization
- Sign-off verifications

Layout Reconstruction for In-Context Extraction

Generates design files to perform extraction within a chiplet context

10/27/2022

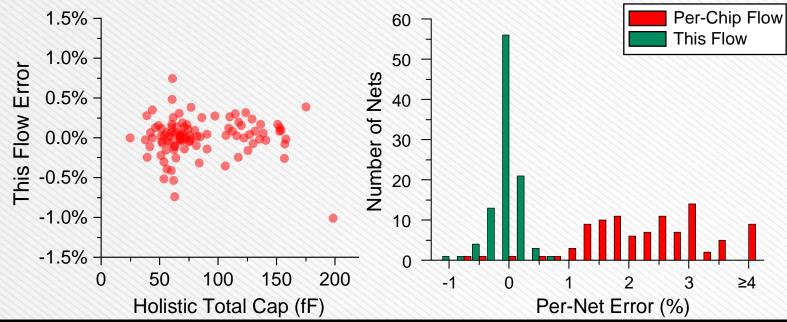
 (\mathbf{Q})


Layout Reconstruction for In-Context Extraction

Layout Reconstruction

Generates design files to perform extraction within a chiplet context

- Extraction on the full-in-context design
- Coupling converted to ground caps at the boundary


Accurate Total Capacitance

Extraction comparison

- Degraded coupling accuracy
- high accuracy in total cap
 - Within +/-1%
- Net delay depends on total cap

	Metal Layer	M1-M5	M6	M7	R1	R2	R3
	Holi	9275	1172	196	1529	2441	1685
AP	InC	8992	1203	193	1517	2390	1640
S	Err (tim-acc)	-3.05%	2.65%	-1.53%	-0.78%	-2.09%	-2.67%
	Err (per-chip)	0.77%	0.77%	-4.08%	2.29%	1.52%	0.30%
CAP	Holi	31056	3307	498	2547	2669	2209
0	InC	31238	3350	495	2591	2654	2192
otal	Err (tim-acc)	0.59%	1.31%	-0.59%	1.74%	-0.55%	-0.76%
P P	Err (per-chip)	0.27%	0.51%	-1.79%	4.49%	3.01%	1.91%

Design, Extraction, and Optimization Tool Flows and Methodologies for Multi-Chip 2.5D Systems

UNIVERSITY O

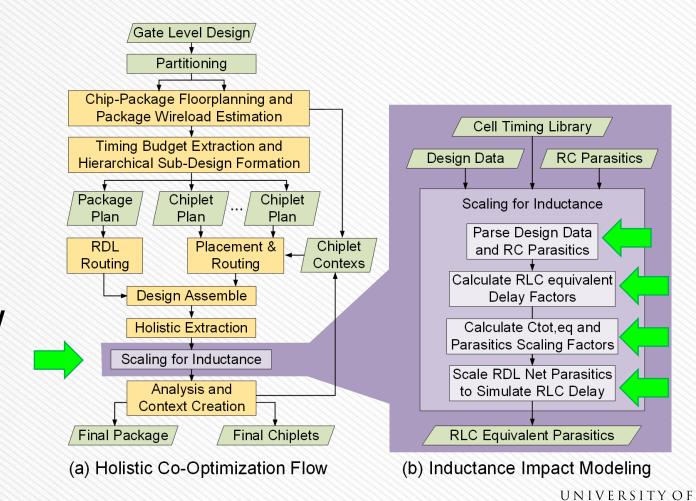
ARKA

Each version has unique strength and weakness

Flow version	Accuracy	Scalability	Flow Complexity
Per-Chiplet	Worst	High	Simplest
Per-Technology	Best	Low	Intermediate
Timing Accurate	Good	High	Complex

Can be unified into a single framework

- Per-chiplet: for estimation
- Timing accurate: distributed design with margin
- Holistic or per-technology flow: final iteration and sign-off



Represent RLC equivalent delay using RC parasitics

- RC scaling
- STA tools don't support inductance

\Box RC scaling flow

- Read design info
- Calculate RLC delay
- Scaling factor = RLC-delay / RC-delay
- Net caps scaled

(3)

RLC equivalent parasitics is computed using equation (3)

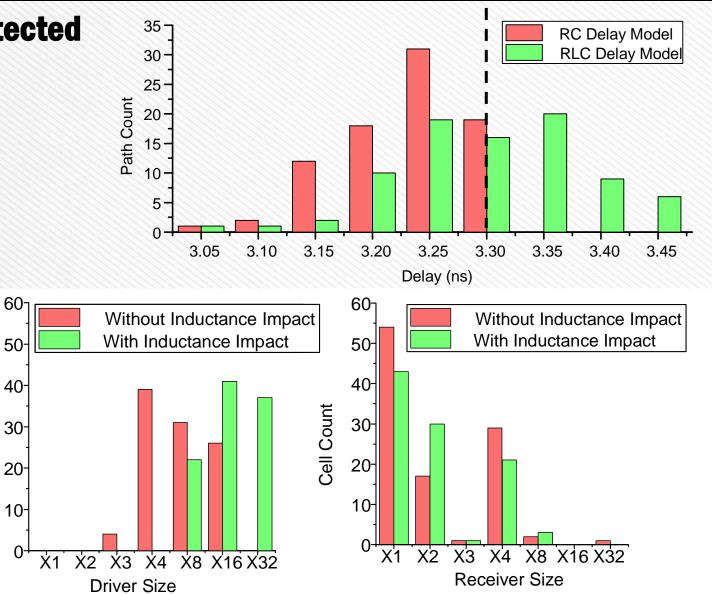
- Cell delay: input transition, total output capacitance
- Net delay: Elmore delay model

$RLC \ delay = cell \ delay + net \ delay \\= LUT (C_{tot,eq}, t_r) + scalePar \times (RC \ net \ delay)$

- Where,
 - C_{tot} : Total Capacitance in the RC network,
 - t_r : Input transition time of the driver cell,
 - C_{tot,eq}: Equivalent total capacitance required to simulate RLC delay,
 - LUT: Cell timing library look-up table

scalePar: $C_{tot,eq} / C_{tot}$

Automatic Driver and Receiver Optimization



□ In RC analysis violations goes undetected

- 35% of the paths in timing violation
- The worst violation is by 0.15 ns

Automatic optimization

- Upsized drivers
- Downsized receiver load

Cell Count

Conclusions

Chiplet-Package interactions are significant in 2.5D systems

Presented flows effectively captures the interactions in analysis & optimization

- Enables holistic planning and optimizations
- Can be used as reference flows

□ Inductance-aware system-level optimization is necessary

RC scaling is one way to achieve it

Future Work

Study the impact of these flows on advanced and/or diverse technologies
Unify all of their unique feature into a single framework
Study signal and power integrity with all RCLM elements
Chiplet-Package co-placement, routing, and optimizations
System performance and SI-aware package design

Publications

Journal

1. MD Arafat Kabir and Yarui Peng, "Holistic Chiplet-Package Co-Optimization for Agile Custom 2.5D Design", IEEE Transactions on Components, Packaging, and Manufacturing Technology (TCPMT), 2021. (IF: 2.04)

Conferences

- 1. MD Arafat Kabir and Yarui Peng, "Chiplet-Package Co-Design For 2.5D Systems Using Standard ASIC CAD Tools", Asia and South Pacific Design Automation Conference (ASPDAC), 2020. (Acc. Rate: 32.6%)
- MD Arafat Kabir and Yarui Peng, "Holistic 2.5D Chiplet Design Flow: A 65nm Shared-Block Microcontroller Case Study", IEEE International System-on-Chip Conference (SoCC), 2020. (Acc. Rate: 30.1%)
- 3. MD Arafat Kabir, Dusan Petranovic, and Yarui Peng, "Coupling Extraction and Optimization for Heterogeneous 2.5D Chiplet-Package Co-Design", International Conference on Computer-Aided Design (ICCAD), 2020. (Acc. Rate: 27%)
- 4. MD Arafat Kabir, Dusan Petranovic, and Yarui Peng, "Cross-Boundary Inductive Timing Optimization for 2.5D Chiplet-Package Co-Design", ACM Great Lakes Symposium on VLSI (GLSVLSI), 2021. (Acc. Rate: 27%)
- 5. MD Arafat Kabir, Weishiun Hung, Tsung-Yi Ho, and Yarui Peng, "Holistic and In-Context Design Flow for 2.5D Chiplet-Package Interaction Co-Optimization", International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2021, Invited Paper.
- 6. MD Arafat Kabir, Dusan Petranovic, and Yarui Peng, "A Scalable In-Context Design and Extraction Flow for Heterogeneous 2.5D Chiplet-Package Co-Optimization", (accepted) IEEE Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2021.

UNIVERSITY O

ARKA

Thank You

Questions?

