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❑Evolution of IC packaging

●Initially, development was driven by pin-count

●Now, driven by performance, power, bandwidth, etc.

10/27/2022 2Design, Extraction, and Optimization Tool Flows and Methodologies for Multi-Chip 2.5D Systems

Brief History of IC Packages

Images from public domain: wikipedia.com, eetimes.com, researchgate.com, semiwiki.com
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❑2.5D : multiple dies in a single package

❑Package becomes increasingly critical in post-Moore’s Law era

●Better performance, bandwidth, power, yield, compact size

●Novel design techniques

●Heterogeneous integration capabilities

●Supports large systems
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2.5D Systems Today

Intel Lakefield Processor* AMD EPYC Processor**From public domain



❑No standard tool flow exists

❑Existing work

●Flows for IP-reuse and active interposer

●RDL routing methodologies

●PDN and thermally-aware flows

●Flows for IP security: obfuscation

❑Die-by-die flow: chip-package cross-boundary interactions are  ignored
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Existing 2.5D Flows



❑Significant coupling between chip and package layers are expected
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Thin Dielectric Between Chip and Package

*From public domain

Apple A11 using TSMC’s InFO*

Chip

This image was published in 2018!
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RDL



❑Chip-package gap decreasing

●InFO UHD: 1.5um (approx.)

❑Mainstream flow: die-by-die
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❑ASIC-CAD compatible cross-boundary flow frameworks

●Compatible with existing tools

●Chiplet-package cross-boundary design and optimization

❑System-level iterative optimization

❑Handling homogeneous and heterogeneous 2.5D systems

❑Agile customization techniques
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Contributions of This Thesis



❑Holistic flow for homogeneous 2.5D systems

●A framework for cross-boundary flow

●Agile customization techniques

●Silicon validation

❑In-context flows for heterogeneous systems

●A scalable per-chiplet in-context flow

●A highly accurate per-technology in-context flow

●A timing-accurate scalable in-context flow

❑Package inductance-aware system-level timing optimization flow
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Proposed Methodologies



❑Designed for homogeneous systems

●Chipletization benefits

●System-level performance and reliability

●Better bandwidth, power, form-factor, etc.

❑Comparable to 2D and traditional 2.5D flows

●Provides reference designs
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Holistic Flow for High-Performance Systems



❑Exchange of cross-boundary design information in planning, design, analysis, 
and optimization steps
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The Holistic Flow
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❑Microcontroller system based on ARM Cortex-M0 core

●16KB RAM: 4x4KB banks

●Peripheral devices: GPIO, UART, timers, etc.
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Experimental Study with MCU
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❑TSMC 65nm used as the PDK

●M1-M7 used for chiplet routing

❑Top three layers modified to include 2.5D package RDLs

●Similar to the TSMC 2.5D InFO technology
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Chiplet-Package Unified Technology

Layer Purpose Width Spacing Thickness Epsilon

M1-M7 Chip Internal Routing TSMC TSMC TSMC TSMC

ILD7 Inter-layer Dielectric - - 5 um 2

M8 RDL1 10 um 10 um 5 um 2.2

ILDR1 Inter-layer Dielectric - - 5 um 2

M9 RDL2 10 um 10 um 5 um 2.2

ILDR2 Inter-layer Dielectric - - 5 um 2

M10 RDL3 10 um 10 um 5 um 2.2

RDL1 (M8)

RDL2 (M9)

RDL3 (M10)

Cont. Pads (via7)



❑Different versions of the MCU implemented for comparative study
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Physical Design for Case Study

(b) Assembled 2.5D system(a) Reference 2D system (c) Chiplet designs
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❑Detailed chiplet-package coupling capacitance is captured

●Chiplet-package coupling not captured in die-by-die flow

●M7-RDL coupling < M6-RDL coupling
▪ less overlap on M7, M6-RDL1 runs in parallel
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Holistic Extraction Captures Interactions

Coupling Capacitance (CCAP)

Metal Layer M1-M5 M6 M7 RDL1 RDL2 RDL3

M1-M5 16348 222.5 446.7 185.3 18.61 10.18

M6 222.5 137.1 32.81 51.7 4.168 2.149

M7 446.7 32.81 371.1 32.43 1.459 1.891

RDL1 185.3 51.70 32.43 65.67 399.3 11.19

RDL2 18.61 4.168 1.459 399.3 103.3 390.5

RDL3 10.18 2.149 1.891 11.19 390.5 115.3

Ground Capacitance (GCAP)

Metal Layer M1-M5 M6 M7 RDL1 RDL2 RDL3

Capacitance 31842 1526 477 853 251 420



❑Package overhead compensated by 85%
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Iterative Optimization Improves Performance

Design 

Case

Chiplet 

Design

Logic 

Gates#

Buffer/

Inverter#

Die Size 

(um2)

M6 WL 

(mm)

M7 WL 

(mm)

Power 

(mW)

Freq. 

(MHz)

Freq. 

Overhead

Case-1 2D Chip 24141 4760 600 x 600 15.13 8.562 20.1 400 0%

Case-2

Core 23933 4684 520 x 475 12.98 19.08 18.4

366 100%

Mem 20 20 415 x 230 2.847 1.991 2.50

Case-3 

initial

Core 23918 4634 520 x 475 13.6 18.12 18.2

384 47.05%

Mem 15 15 415 x 230 4.052 2.312 2.57

Case-3 

final

Core 23909 4653 520 x 475 11.86 17.44 18.2

395 14.70%

Mem 0 0 415 x 230 4.579 3.264 2.57



❑Holistic flow offers flexible customizations

●Very little design effort
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Agile Customizations

(b) System with 16KB Memory (d) Optimized 12KB Design(c) Drop-In 12KB Design(a) System with 8KB Memory (b) System with 16KB Memory (d) Optimized 12KB Design(c) Drop-In 12KB Design(a) System with 8KB MemorySystem with 16KB
380 MHz

Drop-In with 12KB
390 MHz

Pay-as-you-use with 12KB
396 MHz

Core-only with 8KB
400 MHz



❑Dual system shared-block tape-out in TSMC 65

●Shares I/O system: I/O multiplexer module
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Silicon Validation

(a) Die-level design in Innovus (b) GDS for tapeout (c) Microscopic die-shot

I/O Ring

2.5D System2D System

Core-Chiplet

Mem-Chiplet

M7 PG 

stripes I/O Multiplexer

M6 PG stripes 

of 2D system

2.5D System2D System

Core-Chiplet

Mem-Chiplet



❑Functional verification using logic analyzer
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Functional Verification

Clock
Sync Pulse

Count Down at port P1 

Testing waveforms at the logic analyzer

DIP packaged die



❑Heterogeneous: Chips from different technology

❑Holistic flow cannot handle heterogeneity with existing toolset

●Existing tools do not support heterogeneous tech. stack

❑In-Context design and analysis for heterogeneous systems

●Package planning with blackbox macros

●In-context partition

●Separate tech. stack for each partition
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In-Context Flow for Heterogeneous



❑Modified versions of Nangate45nm PDK

●7M3R: 7 chip + 3 package

●6M3R: 6 chip + 3 package
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Technology Setup for Case Study

RDL1 (M8)

RDL2 (M9)

RDL3 (M10)

Cont. Pads (via7)

M6 via6 M7 via7 RDL1 viar1 RDL2 viar2 RDL3

Height 2.28 3.08 3.9 7.5 12.5 17.5 22.5 27.5 32.5

Thickness 0.8 0.82 3.6 5 5 5 5 5 5

Width 0.4 0.4 2 5 10 10 10 10 10

Spacing 0.4 0.44 2 10 10 20 10 20 10



❑Holistic designs are re-implemented in the new setup

●For direct comparison with in-context designs

●Using the 7M3R stack

●Package overhead reduction by 63%
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Reference Holistic Designs in 45nm PDK

Design 

Case

Chiplet

Design

Logic 

Gates#

Buffer/

Inverter#

Die Size 

(um2)

M6 WL 

(mm)

M7 WL 

(mm)

Power 

(mW)

Freq. 

(MHz)

Freq. 

Overhead

Case-1 2D Chip 17595 3700 550x550 79.94 0 10.6 333 0%

Case-2
Core 17783 2740 390x590 30.81 1.783 7.751

245 100%
Mem 132 132 350x470 5.986 0.598 0.194

Case-3 

initial

Core 17915 2865 390x590 31.86 1.875 9.043
280 60.23%

Mem 148 148 350x470 8.201 0.589 0.216

Case-3 

final

Core 18214 2955 390x590 31.42 2.02 9.840
300 37.50%

Mem 45 45 350x470 8.445 0.624 0.162



❑Direct modification of the holistic flow
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Per-Chiplet In-Context Flow
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● Stitching parasitic netlist

● System-level analysis and optimization

In-Context Flow



❑An extra level in the design hierarchy for extended partition
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In-Context Partitions

Inside Core-Context
Inside Mem-Context
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❑Extraction comparison

●All coupling captured like holistic

●Reasonable accuracy in coupling

●Overestimated ground cap
▪ Fringe caps at cutting edges
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Captures Cross-Boundary Coupling

Metal Layer M1-M5 M6 M7 R1 R2 R3

C
C

A
P Holi 9172 1263 156 1544 2421 1721

InC 9171 1265 153 1563 2489 1765

InC Err -0.01% 0.17% -2.10% 1.20% 2.81% 2.56%

G
C

A
P Holi 21119 2054 272 1040 247 636

InC 21119 2053 273 1103 306 696

InC Err 0.00% -0.01% 0.09% 6.03% 24.0% 9.46%

Comparison of Extraction result w.r.t. Holistic

❑Performance comparison

●Effective iterative optimization

●Performance comparable to holistic 
implementations

Design iteration LPD (ns) In-C Perf Holi Perf

with RDL wireload 3.55 281 MHz 280 MHz

In-Context 1st iteration 3.35 298 MHz -

In-Context 2nd/final 3.35 298 MHz 300 MHz

Iterative optimization result



❑Avoid cutting the package

●Assemble all chiplets of same technology

●Post-processing to fix double-counting
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Per-Technology In-Context Flow

Sign-off verifications

Post-processing: Package cap and res adjustment

Parasitics stitching and Analysis
Chiplet timing-contexts 

for next iteration

Design Information

In-house Tool
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Gate Level Design

Partitioning, top-level planing, RDL estimation

Design Assembly

In-Context Extraction
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...

...

Chiplet Plan
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Chiplet Physical 

Design
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Design
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In-Context Extraction
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Package Design
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Package Design

Package Plan
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Macro
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Blackbox

Macro

(b) Assembled Mem-Context (6M3R)

Blackbox

Macro

(a) Assembled Core-Context (7M3R)

Blackbox

Macro



❑Package layer cap is reduced by a fraction of top-only extraction numbers

●Top-only extraction: all chiplets as blackbox

●CapRDL: RDL cap from in-context extraction 

●TCapRDL: Extraction on package only

●userFact: provided by the designer

●Cap nodes of a net multiplied with layerFactx of that layer
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Post-Processing Methodology



❑Extraction comparison

●All coupling captured like holistic

●Very high accuracy: 100% approx.
▪ GCAP and CCAP

❑Performance comparison

●Homogen: 7M3R + NG

●Heterogen with two stacks and lib
▪ Core: 7M3R + NG

▪ Mem: 6M3R + GSCL (FreePDK)

❑Major concerns

●Scalability

●Empirical param: userFact
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Improved Extraction Accuracy

Metal Layer M1-M5 M6 M7 R1 R2 R3

G
C

A
P

Holi 21605 2161 284 1032 219 513

InC 21605 2162 284 1034 220 513

Err (per-tech) 0.00% 0.00% 0.01% 0.24% 0.6% 0.00%

Err (per-chip) 0.00% -0.01% 0.09% 6.03% 24.0% 9.46%

C
C

A
P

Holi 8988 1292 203 1553 2412 1648

InC 8989 1291 202 1553 2412 1648

Err (per-tech) 0.00% 0.04% 0.64% 0.03% -0.01% 0.00%

Err (per-chip) 0.01% 0.17% -2.10% 1.20% 2.81% 2.56%

Comparison of Extraction result w.r.t. Holistic

Iterative optimization result

Design Homogeneous Heterogeneous

Iteration Holistic In-Context (per-tech)

Initial 288 MHz 288 MHz 287 MHz

1st iteration 293 MHz 294 MHz 294 MHz

2nd/final iteration 300 MHz 300 MHz 300 MHz



❑Takes advantage of the flip-chip extraction flow to perform in-context extraction

●Planning and physical design: previous flows

●Layout reconstruction
▪ Not cutting the package

▪ Not extracting the entire package

●in-context extraction on each chiplet

●Hierarchy adjustment before parasitics stitching

●In-C/Sys. Analysis and verification

●Iterative optimization

●Sign-off verifications
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Timing-Accurate In-Context Flow
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❑Generates design files to perform extraction within a chiplet context
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Layout Reconstruction for In-Context Extraction

Details of Layout Reconstructions

Extraction Environment (D1)
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Details of Layout Reconstructions

Extraction Environment (D1)

 

Top-Level

Package Design (T)

...

Full-in-Context Design (D1)

In-Context

Design (D1)

Chiplet-1 (D1)

In-Context 

Partition-1

(C1)

Chiplet-n (Dn)

In-Context 

Partition-n

(Cn)

Layout 

Reconstruction

Extraction Env.Full-in-Context Dsn.

Extraction Environment In-Context DesignFull-in-Context Design

❑Generates design files to perform extraction within a chiplet context
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Layout Reconstruction for In-Context Extraction

●Extraction on the full-in-context design

●Coupling converted to ground caps at the boundary

Extraction 
target



❑Extraction comparison

●Degraded coupling accuracy

●high accuracy in total cap
▪ Within +/-1%

●Net delay depends on total cap
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Accurate Total Capacitance
Metal Layer M1-M5 M6 M7 R1 R2 R3

C
C

A
P

Holi 9275 1172 196 1529 2441 1685

InC 8992 1203 193 1517 2390 1640

Err (tim-acc) -3.05% 2.65% -1.53% -0.78% -2.09% -2.67%

Err (per-chip) 0.77% 0.77% -4.08% 2.29% 1.52% 0.30%

T
o

ta
l 
C

A
P Holi 31056 3307 498 2547 2669 2209

InC 31238 3350 495 2591 2654 2192

Err (tim-acc) 0.59% 1.31% -0.59% 1.74% -0.55% -0.76%

Err (per-chip) 0.27% 0.51% -1.79% 4.49% 3.01% 1.91%

Holistic Total Cap (fF)
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❑Each version has unique strength and weakness
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In-Context Flow Comparison

Flow version Accuracy Scalability Flow Complexity

Per-Chiplet Worst High Simplest

Per-Technology Best Low Intermediate

Timing Accurate Good High Complex

❑Can be unified into a single framework

●Per-chiplet: for estimation

●Timing accurate: distributed design with margin

●Holistic or per-technology flow: final iteration and sign-off



❑Represent RLC equivalent delay using RC parasitics
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Inductance-Aware Flow

●RC scaling

●STA tools don’t support inductance

❑RC scaling flow

●Read design info

●Calculate RLC delay

●Scaling factor = RLC-delay / RC-delay

●Net caps scaled



❑RLC equivalent parasitics is computed using equation (3)

●Cell delay: input transition, total output capacitance

●Net delay: Elmore delay model
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RC Parasitic Scaling for Inductance

Where,

𝐶𝑡𝑜𝑡 : Total Capacitance in the RC network,

𝑡𝑟 : Input transition time of the driver cell,

𝐶𝑡𝑜𝑡,𝑒𝑞 : Equivalent total capacitance required to simulate RLC delay, 

𝐿𝑈𝑇 : Cell timing library look-up table

𝑠𝑐𝑎𝑙𝑒𝑃𝑎𝑟 :  𝐶𝑡𝑜𝑡,𝑒𝑞 / 𝐶𝑡𝑜𝑡

𝑅𝐿𝐶 delay = 𝑐𝑒𝑙𝑙 𝑑𝑒𝑙𝑎𝑦 + 𝑛𝑒𝑡 𝑑𝑒𝑙𝑎𝑦
= 𝐿𝑈𝑇 (𝐶𝑡𝑜𝑡,𝑒𝑞 , 𝑡𝑟 ) + 𝑠𝑐𝑎𝑙𝑒𝑃𝑎𝑟 × (𝑅𝐶 𝑛𝑒𝑡 𝑑𝑒𝑙𝑎𝑦)

(3)

𝐶𝑡𝑜𝑡,𝑒𝑞 / 𝐶𝑡𝑜𝑡



❑In RC analysis violations goes undetected

●35% of the paths in timing violation

●The worst violation is by 0.15 ns

❑Automatic optimization

●Upsized drivers

●Downsized receiver load
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Automatic Driver and Receiver Optimization
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❑Chiplet-Package interactions are significant in 2.5D systems

❑Presented flows effectively captures the interactions in analysis & optimization

●Enables holistic planning and optimizations

●Can be used as reference flows

❑Inductance-aware system-level optimization is necessary

●RC scaling is one way to achieve it
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Conclusions



❑Study the impact of these flows on advanced and/or diverse technologies

❑Unify all of their unique feature into a single framework

❑Study signal and power integrity with all RCLM elements

❑Chiplet-Package co-placement, routing, and optimizations

❑System performance and SI-aware package design
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Future Work
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Questions?


