

2021 International Symposium on VLSI Design, Automation and Test Invited Talk

Holistic and In-Context Design Flow for 2.5D Chiplet-Package Interaction Co-Optimization

MD Arafat Kabir¹, Weishiun Hung², Tsung-Yi Ho², and <u>Yarui Peng¹</u> ¹CSCE Department, University of Arkansas ²CS Department, National Tsing Hua University

4/16/2021

Overview

Package becomes increasingly critical in post-Moore's Law era

- High-density 2D, 2.5D IC, 3D Mem, 3D Sensor, 3D IC, Monolithic 3D IC
- Heterogeneous integration capabilities (AMD EPYC2, Intel Lakefield)

Interactions between the package and chiplets are growing:

- Pin density requires advanced-yet-low-cost integration
- Package layers are getting closer and more similar to chip BEOL

Cross-boundary Chip-Package Co-design CAD tools are missing:

 No existing standard flow that designs 2.5D systems considering chiplets and package interactions during optimization and analysis

Chiplet Chiplet High-density integration scheme with ~5 µm pitch (e.g., InFO)

Our Target

Traditional die-by-die design flow can achieve the shortest possible 2.5D system design time using off-the-shelf chiplets.

- Cannot ensure the maximum performance and highest reliability
- Pin-dominate nature requires both chip and package characteristics

This research aims to develop the key models and CAD tools to:

- Combine chip and package into a single design environment
- Enable integrating heterogeneous components with advanced multi-die packaging techniques (InFO, CoWoS, EMIB, etc).
- Provide an open-source design platform for agile 2.5D chiplet designs

We incorporate the necessary interactions between package and chiplets during design, optimization and analysis steps [1]

Holistic top-level planning of the entire system

Maintaining parallelism in implementation of individual component

Capturing interactions among all the components of the system in optimization and analysis

[1] <u>Md. Arafat Kabir</u>, and <u>Yarui Peng</u>, "Chiplet-Package Co-Design For 2.5D Systems Using Standard ASIC CAD Tools", in *Proc.* Asia and South Pacific Design Automation Conference, pp. 351-356, Jan 2020.

4/16/2021

System architecture of proof-of-concept design

- Microcontroller system based on ARM Cortex-M0 core
- 16KB RAM with some common peripheral devices

We use Nangate45nm as our baseline PDK

• M1-M7 used for chiplet routing

We modify the top three layers to include 2.5D package RDLs

Dimensions are similar to the TSMC 2.5D InFO technology

	M6	via6	M7	via7	RDL1	viar1	RDL2	viar2	RDL3
Height	2.28	3.08	3.9	7.5	12.5	17.5	22.5	27.5	32.5
Thickness	0.8	0.82	3.6	5	5	5	5	5	5
Width	0.4	0.4	2	5	10	10	10	10	10
Spacing	0.4	0.44	2	10	10	20	10	20	10

RDL Routing Strategy

To minimize long wires and detours on RDLs, we are using following strategies.

- We don't assign signals to chiplet pins before routing.
- We route the pins first, and then assign signals based on the routing. This way we have more control and can achieve a very regular routing.
- Use as many straight wires as possible to connect the chiplet pins.

After top level planning, chiplets and package are implemented independently with constraints propagated from top-level

- Top level design is hierarchically split like 2D partitioning.
- Chiplet floorplan may change as required, only the pin arrangement needs to be the same as fixed by top level planning.
- Chiplet implementation is the similar as the conventional 2D chip that includes power planning, placement, time design, routing and post routing optimizations.

(a) Core System Chiplet

(b) Extended Memory Chiplet

- Finished package and chiplet designs are assembled for holistic extraction.
 - As the design environment has everything together, incremental optimizations can be performed to improve overall system performance.
 - The analysis and optimization tools have all the information needed to account for the impacts of RDLs on chiplet design.

Assembled System

Zoom-in View

Chiplet-Package coupling capacitance

- The columns for RDL1, RDL2, and RDL3 show the coupling capacitance between package layers and chiplet layers (in fF).
- M7 and RDL1 are extracted with considerations from the other side
 - Package-to-M7 is low because of a smaller number of wires on M7.
 - However, package-to-M6 coupling is captured in the parasitic extraction

Coupling Capacitance							
	M1-M5	M6	M7	RDL1	RDL2	RDL3	
M1-M5	6120	442.2	28.65	52.95	8.102	5.862	
M6	442.2	596.6	78.03	122.8	12.98	10.53	
M7	28.65	78.03	30.63	15.02	1.509	2.256	
RDL1	52.95	122.8	15.02	299.3	1016	39.06	
RDL2	8.102	12.98	1.509	1015	298.3	1085	
RDL3	5.862	10.53	2.256	39.06	1084	578.4	
Ground Capacitance							
Metal Layer	M1-M5	M6	M7	RDL1	RDL2	RDL3	
Capacitance	21119	2054	272	1040	247	636	
						ARKA	

Chiplet-package interaction is used to improve the system performance through iterative optimizations

 Chiplet design tool automatically optimizes the inter-chiplet IO buffers to compensate for package overhead by 62.5%

Design Case	Chiplet Design	Logic Gates#	Buf/ Inv#	Die Size (um ²)	M6 WL (mm)	M7 WL (mm)	Power (mW)	Freq. (MHz)	Freq. Overhead
2	D	17595	3700	550x550	79.94	0	10.6	333	0%
2.5D	Core	17783	2740	390x590	30.81	1.783	7.751	245	100%
base	Mem	132	132	350x470	5.986	0.598	0.194		100%
2.5D	Core	17915	2865	390x590	31.86	1.875	9.043	- 280	60.229/
initial	Mem	148	148	350x470	8.201	0.589	0.216		00.23%
2.5D	Core	18214	2955	390x590	31.42	2.02	9.840	- 300	27 50%
final	Mem	45	45	350x470	8.445	0.624	0.162		37.50%
///////////////////////////////////////									ARKANSA

Existing EDA tools cannot handle multiple heterogeneous technologies together in a common design scope

- Holistic timing budget and parasitic extraction not possible for heterogeneous technologies.
- We break down the package into sub-regions around chiplets (package contexts) and create an extended partition for each chiplet.
- We perform in-context extraction and then stitch all SPEFs in the analysis tool for analysis and timing context creation.

[2] <u>Md. Arafat Kabir</u>, Dusan Petranovic, and <u>Yarui Peng</u>, "Extraction and Optimization for Heterogeneous 2.5D Chiplet-Package Co-Design", in *Proc. International Conference on Computer-Aided Design*, 2020 Nov.

We prepared a 45nm proof-of-concept design using different metal stacks and cell libraries for different chiplets

- Package is routed using three RDLs (3R)
- Core-chiplet uses seven chip-routing layers (7M) and Nangate library
- Memory-chiplet uses six chip-routing layers (6M) and GSCL library

We performed in-context extraction on the homogeneous design for comparative study

- The total GCAP error is only 0.71% and total CCAP error is only 0.79%
- InC package GCAP is overestimated due to fringe cap. on cutting edges
- Die-by-die extraction (DbD) overestimates GCAP and underestimates CCAP on all layers which may cause signal integrity issues

Metal Layer	M1-M5	M6	M7	R1	R2	R3
Holi GCAP	21119	2054	272	1040	247	636
DbD GCAP	21139	2090	278	1539	362	658
InC GCAP	21119	2053	273	1103	306	696
DbD GCAP Err	0.10%	1.78%	2.09%	47.97%	46.77%	3.45%
InC GCAP Err	0.00%	-0.01%	0.09%	6.03%	24.0%	9.46%
Holi CCAP	9172	1263	156	1544	2421	1721
DbD CCAP	9125	1213	141	1378	2287	1699
InC CCAP	9171	1265	153	1563	2489	1765
DbD CCAP Err	-0.52%	-3.95%	-9.94%	-10.75%	-5.55%	-1.30%
InC CCAP Err	-0.01%	0.17%	-2.10%	1.20%	2.81%	2.56%
						ARKAN

4/16/2021

Our first in-context implementation has some inaccuracy

Overestimated ground capacitance on RDL wires

Metal Layer	M1-M5	M 6	M7	R1	R2	R3
InC GCAP Err	0.00%	-0.01%	0.09%	6.03%	24.0%	9.46%
InC CCAP Err	-0.01%	0.17%	-2.10%	1.20%	2.81%	2.56%

• This is due to the fringe capacitance at the hierarchical boundary

New In-context Flow

\Box Avoid cutting in the new flow

- Assemble chiplet separately, each with a full package design
- Post-process to correct double-counting with incremental SPEF

UNIVERSITY OF

ARKA

In-context parasitics are adjusted based on top-level package

- The entire package is included in all netlists (double-counted)
- The overestimation on package nets are exactly equal to the top-level package (all black-box chiplets) parasitics.
 - Can be used to remove double counting

(a) Assembled Core-Context (7M3R)

(b) Assembled Mem-Context (6M3R)

ARKA

Layer-wise capacitances in an in-context netlist are reduced by a fraction of the layer-wise capacitances of the top-level netlist.

- User specifies, what percent (userFact) of the top-level parasitics need to be reduced from the package nets.
- All cap. nodes (gnd and coup.) of a package net is multiplied using the corresponding factor (layerFact_x).
- The resistance values of the double-counted nets are doubled. But the equivalent resistance due to parallel connection remains correct

$$layerFact_{x} = \frac{CapRDL_{x} - userFact \times TCapRDL_{x}}{CapRDL_{x}}$$
(1)
$$newNodeCap = nodeCap \times layerFact_{x}$$
(2)

Per-layer error is less than 1% (expected)

Metal Layer	M1-M5	M6	M7	R1	R2	R3
In-C GCAP Err [2]	0.00%	-0.01%	0.09%	6.03%	24.0%	9.46%
In-C GCAP Err this work	0.00%	0.00%	0.01%	0.24%	0.6%	0.00%
In-C CCAP Err [2]	0.01%	0.17%	-2.10%	1.20%	2.81%	2.56%
In-C CCAP Err this work	0.00%	0.04%	0.64%	0.03%	-0.01%	0.00%

Per-net error is also less than 1% (validates the flow)

Parameter	Max. Error	Min. Error	Avg. Error
Path delay	3.30%	0.00%	0.61%
Design constraint	1.80%	0.30%	0.62%
Load Capacitance	1.70%	0.00%	0.29%

[2] <u>Md. Arafat Kabir</u>, Dusan Petranovic, and <u>Yarui Peng</u>, "Extraction and Optimization for Heterogeneous 2.5D Chiplet-Package Co-Design", in *Proc. International Conference on Computer-Aided Design*, 2020 Nov.

4/16/2021

Using in-context flow, we performed design and iterative optimizations of the chiplets

 The heterogeneous in-context design achieved the similar optimization results as homogeneous holistic design

Design Iteration	Homogen Holi	Homogen In-C	Heterogen In-C
With RDL wireload	288	288	287
In-Context 1st iteration	293	294	294
In-Context 2nd/final	300	300	300

Power Group	Homogen Holi	Homogen In-C	Heterogen In-C
Wire	4.34	4.30	4.24
Cell	6.35	6.37	6.22
Total	10.69	10.67	10.46

Agile Custom 2.5D Designs

Our flow also offers design flexibility and agile customization

- System (a): Core-only system without any memory chiplet.
- System (b-c): 2.5D systems with various chiplet/package configurations

(a) System with 8KB Memory

(b) System with 16KB Memory

(c) Drop-In 12KB Design

(d) Optimized 12KB Design

Design	LPD	Frequency	Power	RDL WL
(a)	2.50 ns	400 MHz	18.1 mW	20.9 mm
(b)	2.62 ns	380 MHz	19.7 mW	46.8 mm
(c)	2.56 ns	390 MHz	18.8 mW	46.8 mm
(d)	2.52 ns	396 MHz	18.8 mW	35.5 mm

[3] <u>Md. Arafat Kabir</u>, and <u>Yarui Peng</u>, "Holistic Chiplet-Package Co-Optimization for Agile Custom 2.5D Design", (accepted) IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2021.

4/16/2021

Inductance Consideration

Convert inductance to effective RC for CAD flow compatibility [4]

[4] Md. Arafat Kabir, Dusan Petranovic, and Yarui Peng, "Cross-Boundary Inductive Timing Optimization for 2.5D Chiplet-Package UNIVERSITY OF Co-Design", (accepted) in Proc. ACM Great Lakes Symposium on VLSI, 2021.

4/16/2021

Conclusion and Future Work

Conclusions

- Chiplet-Package interactions need to be considered in 2.5D systems
- Our flow effectively captures interactions between package and chiplet designs for holistic planning and optimization.
- Our flows can handle both homogeneous and heterogeneous designs making use of standard ASIC CAD tools with highly accurate extraction

Future Work

- Cross-boundary RCLM extraction and study of their impacts
- Study of timing, signal and power integrity with full RCLM models
- Custom IO placement and RDL routing of 2.5D systems
- Cross-boundary optimization with active packages

Any question?

For more information, please visit E3DA Lab website: https://e3da.csce.uark.edu

🖵 https://e3da.csce.uark.edu