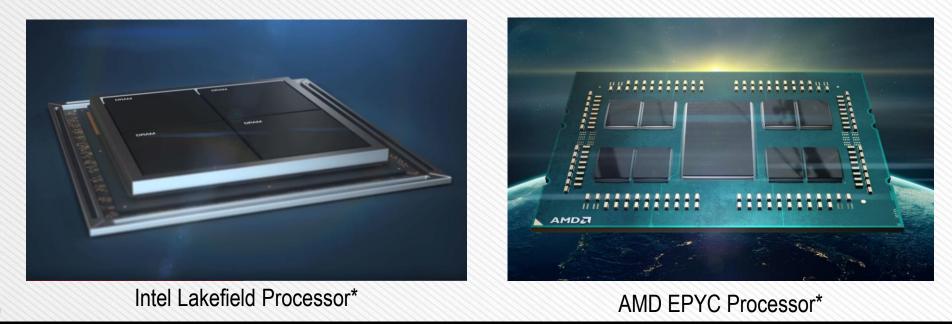


A Scalable In-Context Design and Extraction Flow for Heterogeneous 2.5D Chiplet-Package Co-Optimization

MD Arafat Kabir¹, Dusan Petranovic², Yarui Peng¹ University of Arkansas, Fayetteville, AR, US¹ Siemens EDA, Fremont, CA, US²



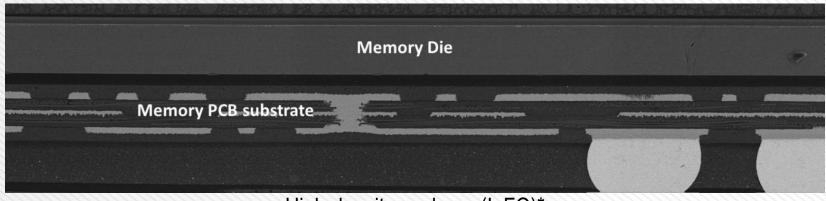
Introduction

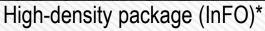
Package becomes increasingly critical in post-Moore's Law era

- Transistor scaling is saturated, and chips are reaching reticle limit.
- 2.5D and 3D packages provide high bandwidth and compact size.
- Novel design techniques like plug-and-play, Drop-in, Hardware security
- Heterogeneous integration capabilities (AMD EPYC family, Intel Lakefield)
- Supports large systems with tens of Known-Good-Dies (AMD's EPYC 7532)

*From public domain

Introduction




Need for a cross-boundary package-aware design strategy

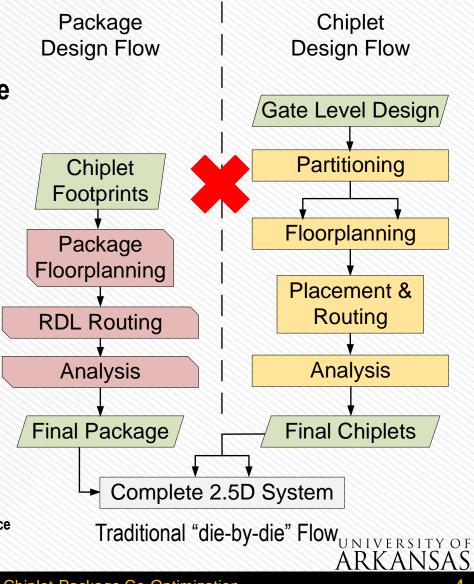
- In high-density packages, interactions between the package and chiplets are significant.
- These interactions affect overall system performance.
- No existing standard flow can design heterogeneous 2.5D systems with high extraction and analysis accuracy, and scalable at the same time.

Objectives

- An accurate and scalable extraction and optimization strategy for heterogeneous 2.5D systems
- Comparative study with existing flows for accuracy and scalability

*From public domain

Need for a Cross-Boundary Flow



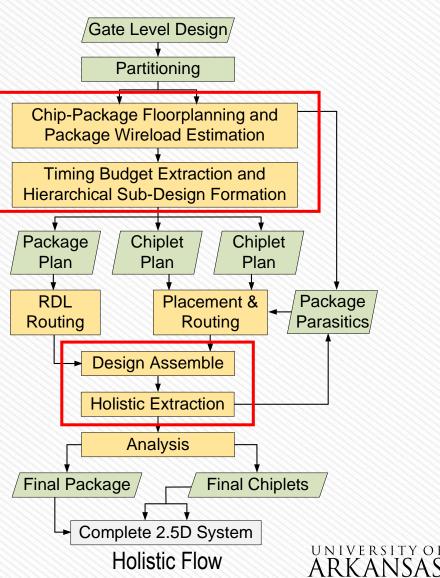
Need for a cross-boundary design strategy

- Traditional "die-by-die" flow treats each chiplet separately
- There exists significant coupling between chiplet and package in high density 2.5D packages [1,2]
- These interaction can be used in the optimization process to reduce package overhead by 60%-80% [1]
- Cross-boundary analysis is required to ensure system reliability and accurately predict the final performance.

[1] MD Arafat Kabir, and Yarui Peng, "Holistic Chiplet-Package Co-Optimization for Agile Custom 2.5D Design", IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 11, no. 5, pp. 715–726, 2021.

[2] Wang, Chuei-Tang, Jeng-Shien Hsieh, et al. "Signal integrity of submicron InFO heterogeneous integration for high performance computing applications." In 2019 IEEE 69th Electronic Components and Technology Conference, pp. 688-694. IEEE, 2019.

Existing Flows: Holistic [1]



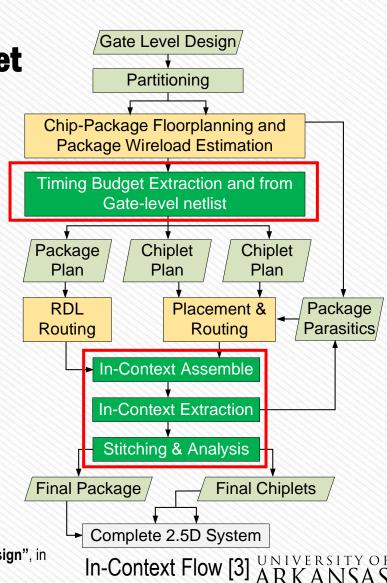
Holistic flow [1] performs extraction and analysis on the entire system together

- Provides the most accurate view of the entire system.
- Can capture all interactions between all components.
- Can perform system-level optimization through iterations.

Limitations,

- Cannot handle heterogeneous technologies using existing industry standard tools
- Not scalable: Too much complexity for a very large system
- IP sharing is an essential part

Existing Flows: In-Context [3]

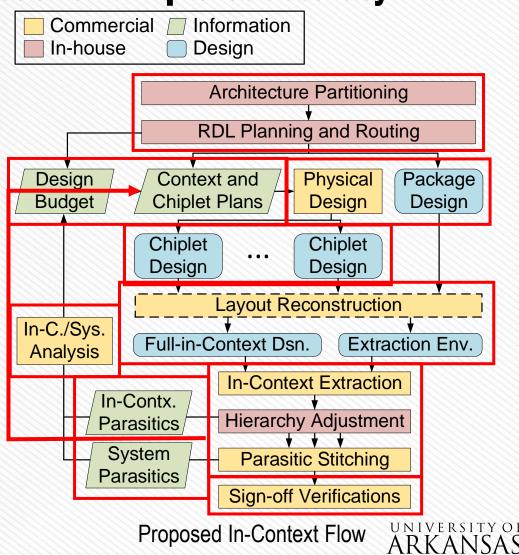

Breaks down the package into regions (contexts) around chiplets and creates an extended partition for each chiplet

- Part of the package around a chiplet is separated.
- Extraction is performed on each context and stitched later for analysis.
- Takes advantage of divide-and-conquer: scalable for a large system.

🗆 Limitations,

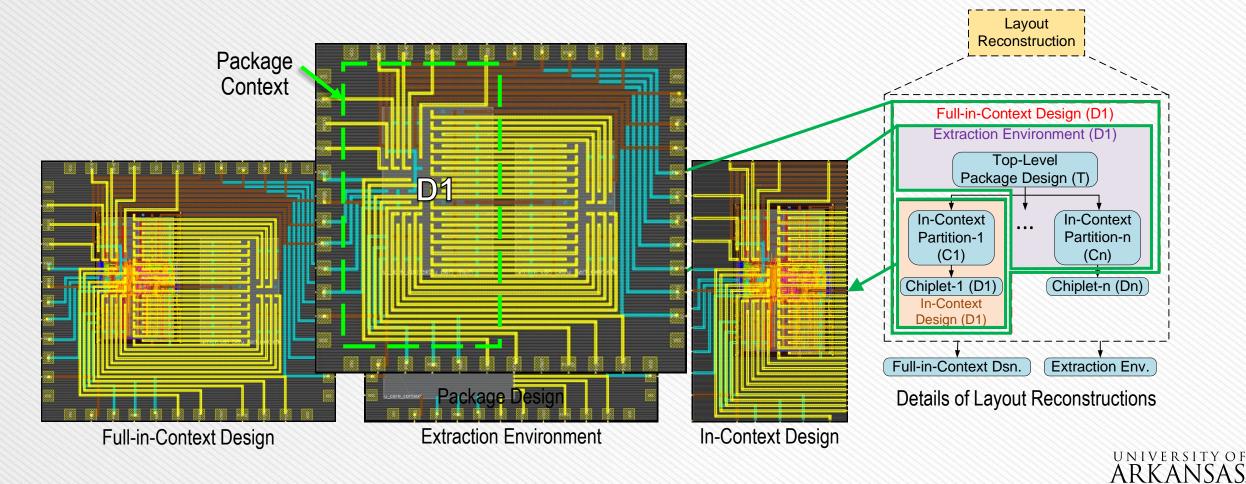
- Each context is not aware of other (even neighboring) parts of the package.
- Highly over-estimates the ground capacitances on RDLs [3] (more than 20%) due to fringe-caps at the cutting edges.

[3] MD Arafat Kabir, Dusan Petranovic, and Yarui Peng, "Coupling Extraction and Optimization for Heterogeneous 2.5D Chiplet-Package Co-Design", in Proc. International Conference on Computer-Aided Design, pp. 1–8, Nov 2020.



Our Proposed In-Context Flow

Takes advantage of the divide-and-conquer approach and improves accuracy through careful in-context extraction,

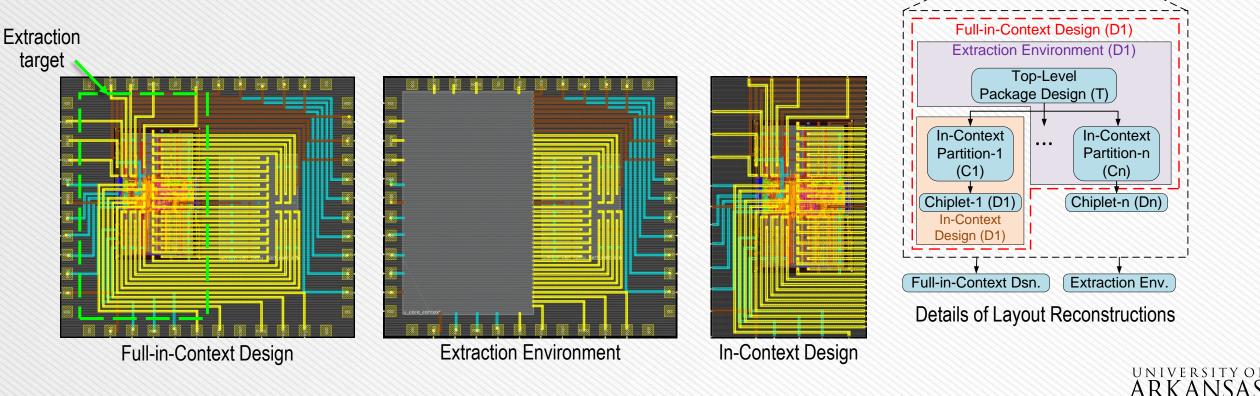

- Perform holistic planning and budgeting (in-house tool).
- Define package contexts and initial plans for all chiplets.
- Implement the package and chiplets through physical design.
- Use the package and chiplet physical designs to create incontext extraction setup for each chiplets (an elaborate step).
- Perform in-context extraction on each chiplet.
- Perform some hierarchy adjustment of parasitic netlists for stitching.
- Perform analysis and verification:
 - On the chiplet context using the in-context parasitic netlist,
 - On the entire-system using the stitched parasitic netlist.
- Perform iterative optimization
- Sign-off verifications

Layout Reconstruction: In-Context Ext. Setup

This step generates the design files required to define the package context for the extraction tool and perform extraction within the context of a given chiplet,

0

Layout Reconstruction: In-Context Ext. Setup

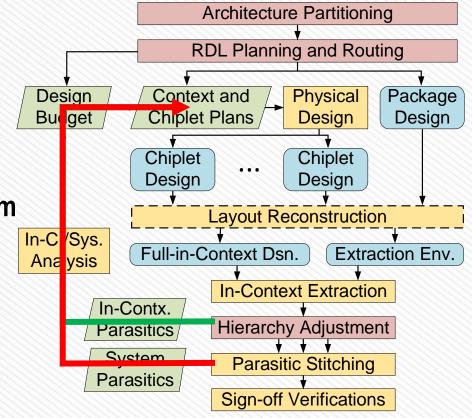


Layout

Reconstruction

This step generates the design files required to define the package context for the extraction tool and perform extraction within the context of a given chiplet,

- Extraction is performed on the full-in-context design; other chiplets are black-boxes
- The coupling between *in-context design* and *extraction environment* wires are converted to ground caps for the *in-context design* wire segment.



Scalability Features

The proposed flow offers scalability through divide-and-conquer, while maintaining system-level analysis accuracy.

- A per-chiplet context reduces design complexity.
- Cross-boundary analysis and iterative optimizations can be performed at the context level.
- Several design houses can collaborate, without revealing IP details.
- System-level holistic view can be created to perform full-system analysis, optimization, and verifications.

Proposed In-Context Flow

ARM Cortex-M0 based micro-controller system

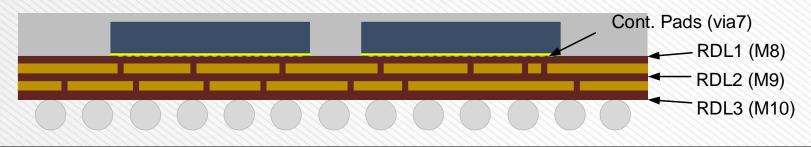
- Consists of an ARM Cortex-M0 core, 16 KB memory, and some common peripheral devices
- Two-chiplet system: Core and Memory
- The 16 KB memory is divided into two parts, 8 KB each.

System architecture and chiplet partitions

UNIVERSITY OF

ARKAI

Technology Settings


□ We use two modified versions of Nangate45nm as our PDK

- 7M3R: 7 metal layers used for chiplet routing
- 6M3R: 6 metal layers used for chiplet routing

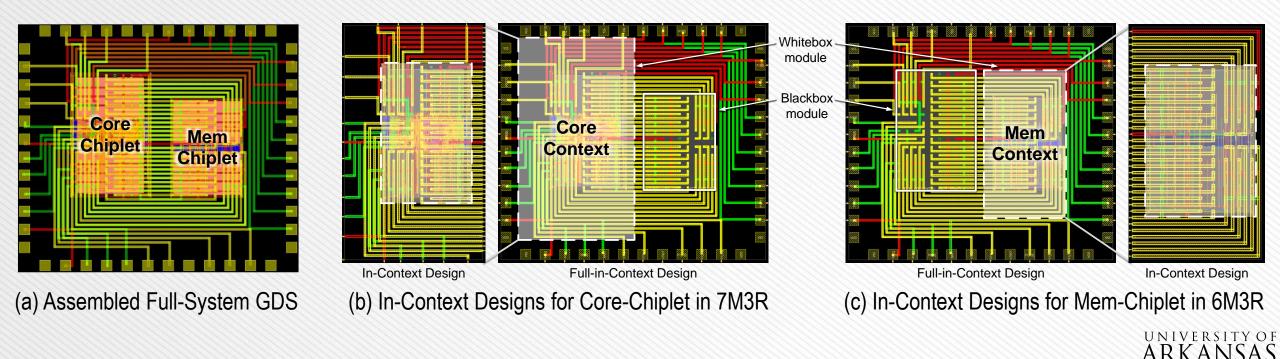
□ Top three layers for package RDLs

• Dimensions are similar to the TSMC 2.5D InFO technology

	M6	via6	M7	via7	RDL1	viar1	RDL2	viar2	RDL3
Height	2.28	3.08	3.9	7.5	12.5	17.5	22.5	27.5	32.5
Thickness	0.8	0.82	3.6	5	5	5	5	5	5
Width	0.4	0.4	2	5	10	10	10	10	10
Spacing	0.4	0.44	2	10	10	20	10	20	10

A Scalable In-Context Design and Extraction Flow for Heterogeneous 2.5D Chiplet-Package Co-Optimization

UNIVERSITY O



Designs for Comparative Study

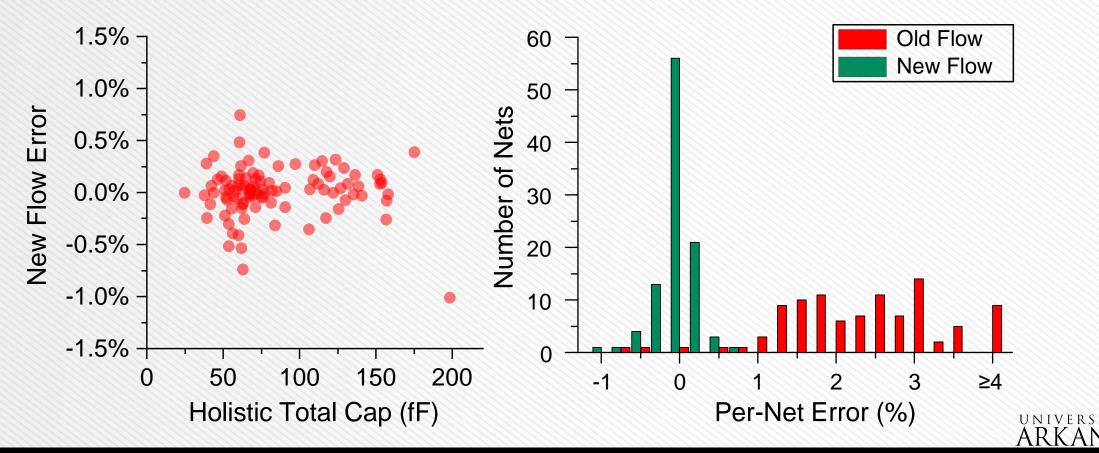
□ Three versions of the system are implementation for comparative study.

- Two homogeneous implementations with 7M3R and Nangate45 cell library
 - In holistic flowIn our proposed In-Context flow
- A (pseudo-)heterogeneous implementation with 7M3R and 6M3R using cells from Nangate45 and FreePDK45 cell libraries.

□ We perform in-context extraction on the homogeneous design for comparative study.

- Coupling capacitance (CCAP) between the package and chiplets are preserved with holistic-like accuracy
- The old flow over-estimates the RDL total capacitance up to 4.5% per layer
- Our new flow corrects it within 1.7% per layer

	Metal Layer	M1-M5	M6	M7	R1	R2	R3
P	Holi	9275	1172	196	1529	2441	1685
CCA	In-C Old	9346	1181	188	1564	2478	1690
	In-C New	8992	1203	193	1517	2390	1640
Total CAP	Holi	31056	3307	498	2547	2669	2209
	In-C Old	31140	3324	489	2661	2749	2251
	Old Err%	0.27%	0.51%	-1.79%	4.49%	3.01%	1.91%
	In-C New	31238	3350	495	2591	2654	2192
	New Err%	0.59%	1.31%	-0.59%	1.74%	-0.55%	-0.76%



In-Context Extraction Per-Net Comparison

□ The accuracy improvement is more evident on per-net comparison.

The previous flow [3] has almost all 100 nets over-estimated, error up to 7%.
The proposed flow achieves holistic-like accuracy, with 1% error margin.

 \mathbf{Q}

Iterative Optimization Results

The iterative optimization results using the proposed flow very closely match with the holistic flow optimization results.

• The heterogeneous 45nm design is comparable with the homogeneous design, with slight difference due to multiple libraries used

e	Design	Homog	Heterogeneous		
anc	Iteration	Holistic	In-Context	(New Flow)	
Performance	Initial	288 MHz	287 MHz	278 MHz	
	1st iteration	293 MHz	290 MHz	294 MHz	
	2nd/final iteration	300 MHz	300 MHz	300 MHz	
Power	Power Group	Holistic	In-Context (New Flow)		
	Wire	4.35 mW	4.37 mW	4.21 mW	
	Cell	6.39 mW	6.36 mW	6.20 mW	
	Total	10.74 mW	10.73 mW	10.41 mW	

- Chiplet-Package interactions need to be considered in 2.5D systems.
- Our flow can handle heterogeneous systems and effectively captures interactions between package and chiplet designs for holistic planning and optimization.
- Unlike existing in-context flows, it provides both accuracy and scalability features for cross-boundary analysis and optimization.
- Our flow enables large scale 2.5D system design through collaboration of several design houses, maintaining IP protection and parallelism in the design process.

Future Work

- Preserving the coupling with out-of-context package wires
- Cross-boundary RCLM extraction and study of their impacts
- Study of timing, signal and power integrity with full RCLM models
- System-level performance and SI-aware package design

10/18/202

1

Thank You

Do you have any questions?

