

🎌 +1 (479) 575-6043

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

Imam Al Razi¹, Quang Le², H. Alan Mantooth², Yarui Peng¹

Computer Science and Computer Engineering Department¹ Electrical Engineering Department²

University of Arkansas, Fayetteville, AR, US

🖂 ialrazi@uark.edu

Power Electronics is Everywhere

ELECTRIC GENERATION

Electric automobiles

Aircrafts

Smart grid

Consumer electronics

Power converters are essential parts of power systems

UNIVERSITY OF

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

Multi-Chip Power Modules

□ Foundation element of power converters

Integrates power devices and control circuitry in a single package

Wide Bandgap Devices (SiC/GaN)

- Increased power density
- New packaging technologies
- Heterogeneous integration

Traditional Design Flow

Typical power electronics design flow:

- Manual, iterative, and computationally expensive
- Single solution at a time
- Multiple conflicting aspects
 - Electrical
 - Thermal
 - Mechanical
- Requires human expertise

No quick turnout solution flow

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

UNIVERSITY OF ARKANSAS

Automation in MCPM Design

Electronic design automation (EDA) tool can

- Overcome the limitations with the manual approach
- Reduce both engineering time and cost
- Handle multi-objective optimization

Requirements:

- Capability of producing layout solutions
 - Manufacturable
 - Reliable
 - Electro-thermo-mechanically optimized

Ability to export

- Commercially available 3D FEA tools
- Parasitic netlist for circuit simulation

Commercial half-bridge power module

EDA tool can bridge the gap between circuit design and physical design

Layout Synthesis and Optimization

PowerSynth: An EDA tool with the goal streamlining the MCPM design process in a multi-objective optimization framework.

T. M. Evans et al., "PowerSynth: A Power Module Layout Generation Tool," in IEEE Transactions on Power Electronics, 2019 (Highlighted paper)

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

6

ARKANSAS

2D-2.5D-3D Layout Definition

Definition under PowerSynth scope:

- 2D layout: Single substrate with one device layer
- 2.5D layout: Multiple substrates connected horizontally
- 3D layout: Multiple substrates stacked vertically

Circuit schematic of a full-bridge module

11/2/2021

7

PowerSynth Progression

PowerSynth Development History

• Features

- Simple 2D layouts
- Symbolic layout representation
- Matrix-based layout engine
- Iterative DRC-checking
- 2D layouts with complex geometry
 Constraint-aware, flat-level layout engine
 Heterogeneous components
 Multiple optimization techniques
- All 2D/2.5D Manhattan geometries
- Hierarchical layout representation
- Hierarchical layout optimization
- Larger solution space
- Hardware-validated optimization result

Release Webpage:

PS v1.1

https://e3da.csce.uark.edu/release/PowerSynth/

PS v1.9

PowerSynth v2

Data Input

- Hierarchical input script
- Manufacturer Design Kit (MDK)

Layout Synthesis

- Generic, scalable, and efficient algorithms
- 100% DRC-clean

Layout Evaluation

- Electrical/Thermal/Mechanical model
 - High-speed, reduced-order, accurate
- Reliability optimization

Optimization Toolbox

- Multi-objective optimization
 - Different approaches

Export & Simulation

- Commercial CAD/FEA tools
- Parasitic netlist

Cabinet	2D/2.5D/ <mark>3D</mark> Designs, Python 3, QT 5, Windows/Linux					
Exp <mark>ort</mark> &	Solution	Solution	Netlist	Simulatio	on Export	_ o _
Simulation	Browser	Database	Exporting	Interface	e Functions	
Optim <mark>iz</mark> ation	Genetic	Machin	e- Simula	ated-P	re/Post-Layout	ommand
Toolbox	Algorithms	Learnir	ng Annea	aling	Optimization	
La <mark>yo</mark> ut Evaluation	Electrical model	Therm mode	al Reliat I mod	oility Pa lel	rtial Discharge model	Line Inte
La <mark>yo</mark> ut	Constrain	t Connectivity		ТУ	Layout	
Synthesis	(DRC)	(LVS)			Generation	
Data Input	Object-based layout M representation		MFG Desig Kit (MDK)	jn Embe e	edded scripting nvironment	_l)

PowerSynth architecture (v2)

PowerSynth Optimization Result Validation

2.5D Full-Bridge MCPM Optimization

Initial layout

Electrical performance validation

Metric: Power loop inductance

Source	Ringing Freq.	Inductance
PowerSynth	86.0 MHz	8.54 nH
Measurement	89.4 MHz	8.70 nH

Fabricated optimized design

Thermal performance validation

Metric: Maximum junction temperature

	Maximum Temperature (K)				Temp. Rise
Case	D1	D2	D3	D4	Diff.
Measurement	416.8	416.5	427	427.7	-
ANSYS	418.9	416.8	422.4	422.9	-3.57%
PowerSynth	418	417.9	418.3	418.5	-7.15%

Imam Al Razi et. al., "PowerSynth Design Automation Flow for Hierarchical and Heterogeneous 2.5D Multi-Chip Power Modules", IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 8919-8933, 2021.

Methodology

Input Layout

Hierarchical input geometry script

Layout Engine

- Hierarchical corner stitch tree
 - Horizontal (HCS) and Vertical (VCS)
- Hierarchical constraint graph:
 - Horizontal (HCG) and Vertical (VCG)
- Built-in randomization algorithm
- Generic rigid constraint handling
- Generic connection handling

Multi-Objective Optimization

- Genetic algorithm
- Performance evaluation models: Electrical, Thermal

Manufacturer Design Kit (MDK)

High-level workflow

11

UNIVERSITY OF

Hierarchical Corner Stitch

Tree structure is maintained to preserve component hierarchy

• Tree structure construction:

- The root is the initial empty tile (substrate rectangle).
- All components are inserted in a group-wise manner.
- Two types of tile in each node: parent (background tile) and children (foreground tile).
- Two tree for each layout: HCS tree and VCS tree

• In the example:

- All traces are in the root.
- T2,T3, and T4 are connected → Same group.
- D1 is placed on T5, that makes D1 child and T5 parent.

Hierarchical Constraint Graph

13

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

Input Layout

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

14

Input Layout Hierarchy

15

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

11/2/2021

Hierarchy Tree Creation

6

8

Layout Generation

□ High-level steps:

- 1 Read Input Script
- 2 Create a root node
- 3 Create group of layers connected with same via
- 4 For each via connected group
- 5 Create a sub-root
 - For each layer
 - Create HCS, VCS
 - Create and Evaluate HCG, VCG
- 9 **For each** ancestor from leaf to root
- 10 Perform bottom-up constraint propagation
- 11 Evaluate root node and compute available space
- 12 For each sub-tree from root to leaf
- 13 Perform top-down location propagation
- 14 Evaluate independent nodes

Constraint Propagation and Evaluation

Each constraint graph is evaluated using longest path algorithm.

The evaluated constraints are propagated in a bidirectional manner.

- Bottom-up constraint propagation
 - Propagates from leaf towards root
 - Evaluated minimum constraints
 - Ensures room for child component

Top-down location propagation

- Starts on arrival of all minimum constraint values in the root
- Root node evaluation can generate three types of solutions:
 - Minimum-sized
 - Variable-sized
 - Fixed-sized
- Propagates from root towards child
- Shared vertices locations are propagated

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

FADF

\Box Two types of edges:

- Rigid edge: Having fixed (constant) weight (•····•)
- Flexible edge: weight can be varied (----)

\Box Two types of vertices:

- Independent: locations are randomized independently. (
- Dependent: all incoming or outgoing edges are rigid edges. (
)

(a) Horizontal corner-stitched layout of a trace with a device, (b) HCG of the layout in (a),
 (c) Modified HCG : after bypassing dependent vertex

Non-dominated Sorting Genetic Algorithm II (NSGAII)

Customized flow for 2D/2.5D/3D MCPM layout optimization

UNIVERSITY OF

ARKAN

2D/2.5D/3D Layout Solutions

- Minimum-sized solutions
- Heterogeneous 2D/2.5D design

Power loop inductance 2.11 nH (3D) vs 7.12 nH (2.5D/3D)

ARKA

NSGAll vs Randomization

Runtime comparison

11/2/2021

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

Optimization Results

Electro-thermal optimization

- 5 floorplan sizes (85 solutions/size)
- FastHenry electrical model + ParaPower thermal model

Pareto-Front Solutions

Three selected solution layouts

Performance metrics

Layout ID	Inductance (nH)	Temperature Rise (°C)	Size (mm × mm)
A	1.37	46.99	26 ×18
В	1.37	37.96	38 × 22
С	2.54	36.72	38 × 22

Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

UNIVERSITY OF ARKANSAS

- PowerSynth is a power module layout synthesis and optimization framework promising for design automation in the power electronics industry.
- The capability to optimize all 2D/2.5D/3D power modules reaches state-of-the-art.
- The generic, scalable, and efficient algorithms can adapt to most existing packaging technologies in the industry.
- The current version relies on external tools and models, resulting in a relatively long performance evaluation runtime.

Future Work

- Implement built-in, reduced-order 3D performance evaluation models
- Apply parallel processing for performance evaluation
- Validate 3D MCPM optimization results through hardware validation.

Thank You!

🔜 https://e3da.csce.uark.edu

🖂 ialrazi@uark.edu