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Power Electronics is Everywhere

❑Electric automobiles

❑Aircrafts

❑Smart grid

❑Consumer electronics

❑……….

ELECTRIC GENERATION

C
O

M
M

E
R

C
IA

L

RESIDENTIAL

IN
D

U
S

T
R

IA
L

Power converters are essential parts of power systems



❑Foundation element of power converters

❑Integrates power devices and control circuitry in a single package

❑Wide Bandgap Devices (SiC/GaN)

●Increased power density

●New packaging technologies

●Heterogeneous integration
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Multi-Chip Power Modules

MCPM layout design complexity is increasing 
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❑Typical power electronics design flow:

●Manual, iterative, and computationally expensive

●Single solution at a time

●Multiple conflicting aspects
▪ Electrical

▪ Thermal

▪ Mechanical

●Requires human expertise
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Traditional Design Flow
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❑Electronic design automation (EDA) tool can

●Overcome the limitations with the manual approach

●Reduce both engineering time and cost

●Handle multi-objective optimization

❑Requirements:

●Capability of producing layout solutions
▪ Manufacturable

▪ Reliable

▪ Electro-thermo-mechanically optimized

●Ability to export
▪ Commercially available 3D FEA tools

▪ Parasitic netlist for circuit simulation
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Automation in MCPM Design

EDA tool can bridge the gap between circuit design and physical design  

Commercial half-bridge power module



❑PowerSynth: An EDA tool with the goal streamlining the MCPM design process in 
a multi-objective optimization framework.

11/2/2021 6Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation

Layout Synthesis and Optimization

T. M. Evans et al., "PowerSynth: A Power Module Layout Generation Tool," in IEEE Transactions on Power Electronics,2019 (Highlighted paper)
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❑Definition under PowerSynth scope:

●2D layout: Single substrate with one device layer

●2.5D layout: Multiple substrates connected horizontally

●3D layout: Multiple substrates stacked vertically
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2D-2.5D-3D Layout Definition
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PowerSynth Progression
❑PowerSynth Development History

●Features
▪ Simple 2D layouts

▪ Symbolic layout representation

▪ Matrix-based layout engine

▪ Iterative DRC-checking

▪ 2D layouts with complex geometry

▪ Constraint-aware, flat-level layout engine

▪ Heterogeneous components

▪ Multiple optimization techniques

▪ All 2D/2.5D Manhattan geometries

▪ Hierarchical layout representation

▪ Hierarchical layout optimization

▪ Larger solution space

▪ Hardware-validated optimization result

PS v1.1

PS v1.3/1.4

PS v1.9

Release Webpage: 
https://e3da.csce.uark.edu/release/PowerSynth/



●Data Input
▪ Hierarchical input script

▪ Manufacturer Design Kit (MDK)

●Layout Synthesis
▪ Generic, scalable, and efficient algorithms

▪ 100% DRC-clean

●Layout Evaluation
▪ Electrical/Thermal/Mechanical model

◦ High-speed, reduced-order, accurate

▪ Reliability optimization

●Optimization Toolbox
▪ Multi-objective optimization

◦ Different approaches

●Export & Simulation
▪ Commercial CAD/FEA tools

▪ Parasitic netlist
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PowerSynth v2

PowerSynth architecture (v2)
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●Thermal performance validation
▪ Metric: Maximum junction temperature

❑2.5D Full-Bridge MCPM Optimization

●Electrical performance validation
▪ Metric: Power loop inductance
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PowerSynth Optimization Result Validation
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Source Ringing Freq. Inductance

PowerSynth 86.0 MHz 8.54 nH

Measurement 89.4 MHz 8.70 nH

Case
Maximum Temperature (K) Temp. Rise 

Diff.D1 D2 D3 D4

Measurement 416.8 416.5 427 427.7 -

ANSYS 418.9 416.8 422.4 422.9 -3.57%

PowerSynth 418 417.9 418.3 418.5 -7.15%

Imam Al Razi et. al., “PowerSynth Design Automation Flow for Hierarchical and Heterogeneous 2.5D Multi-Chip Power Modules”, IEEE Transactions on Power 

Electronics, vol. 36, no. 8, pp. 8919-8933, 2021. 



❑Input Layout

●Hierarchical input geometry script

❑Layout Engine

●Hierarchical corner stitch tree
▪ Horizontal (HCS) and Vertical (VCS) 

●Hierarchical constraint graph: 
▪ Horizontal (HCG) and Vertical (VCG)

●Built-in randomization algorithm

●Generic rigid constraint handling

●Generic connection handling 

❑Multi-Objective Optimization

●Genetic algorithm

●Performance evaluation models: Electrical, Thermal
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Methodology

High-level workflow
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❑Tree structure is maintained to preserve component hierarchy

●Tree structure construction:
▪ The root is the initial empty tile (substrate rectangle).

▪ All components are inserted in a group-wise manner.

▪ Two types of tile in each node: parent (background tile) and children (foreground tile).

●Two tree for each layout: HCS tree and VCS tree
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Hierarchical Corner Stitch

2D power module Layout Tree Structure

●In the example:
▪ All traces are in the root. 

▪ T2,T3, and T4 are 
connected → Same group. 

▪ D1 is placed on T5, that 
makes D1 child and T5 
parent.

T3

T2

T1

T4

T5

T6

T7

D1

D2

Root: G1-G5

G2: 

T2-T4

G4: 

T5

G1: 

T1

G3: 

T6

G5: 

T7

T4: 

D2

T5: 

D1



❑Each node in the tree → Constraint graph

●Mapping of the design constraints

❑Example

●From the tree, G4 (parent) and T5:D1 (child), hierarchical 
horizontal constraint graph is shown:
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Hierarchical Constraint Graph
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Input Layout

3D wire bondless half-bridge module

2D layout of each layer
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Input Layout Hierarchy
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Hierarchy Tree Creation

Device (B) + Via (F) Trace (B) + Via (F)

❑Interfacing layer

●Derived layer from it’s child nodes

●No physical existence

●Only created in the constraint 
graph

●Maintains constraints among 
shared components of child nodes
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Layout Generation
❑High-level steps:

1   Read Input Script
2   Create a root node
3   Create group of layers connected with same via

4 For each via connected group
5     Create a sub-root
6     For each layer
7        Create HCS, VCS
8        Create and Evaluate HCG, VCG
9 For each ancestor from leaf to root
10    Perform bottom-up constraint propagation

11  Evaluate root node and compute available space

12 For each sub-tree from root to leaf
13    Perform top-down location propagation

14  Evaluate independent nodes
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❑Each constraint graph is evaluated using longest path algorithm.

❑The evaluated constraints are propagated in a bidirectional manner.
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Constraint Propagation and Evaluation

●Bottom-up constraint propagation
▪ Propagates from leaf towards root

▪ Evaluated minimum constraints

▪ Ensures room for child component

●Top-down location propagation
▪ Starts on arrival of all minimum constraint 

values in the root

▪ Root node evaluation can generate three 
types of solutions:

◦ Minimum-sized

◦ Variable-sized

◦ Fixed-sized

▪ Propagates from root towards child

▪ Shared vertices locations are propagated
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❑Two types of edges: 

●Rigid edge: Having fixed (constant) weight (          )

●Flexible edge: weight can be varied (          )

❑Two types of vertices: 

●Independent: locations are randomized independently. (      )

●Dependent: all incoming or outgoing edges are rigid edges. (      )
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Rigid Constraints Handling
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❑Non-dominated Sorting Genetic Algorithm II (NSGAII)

●Customized flow for 2D/2.5D/3D MCPM layout optimization
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Genetic Algorithm Workflow
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❑2D/2.5D/3D Layout Solutions

●Minimum-sized solutions

●Heterogeneous 2D/2.5D design

●Power loop inductance 2.11 nH (3D) vs 7.12 nH (2.5D/3D)
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Results
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NSGAII vs Randomization
❑Runtime comparison

Algorithm Total Layouts
Approximate runtime(min)

On Pareto-front
Generation Evaluation

NSGAII 937 25 206 148

Randomization 937 1 212 10

NSGAII Randomization

K. D. et al., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002



❑Electro-thermal optimization

●5 floorplan sizes (85 solutions/size)

●FastHenry electrical model + ParaPower thermal model
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Optimization Results

ARL ParaPower, “https://github.com/USArmyResearchLab/ParaPower”.
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❑Three selected solution layouts
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Pareto-Front Solutions
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❑Conclusions

●PowerSynth is a power module layout synthesis and optimization framework promising 
for design automation in the power electronics industry.

●The capability to optimize all 2D/2.5D/3D power modules reaches state-of-the-art.

●The generic, scalable, and efficient algorithms can adapt to most existing packaging 
technologies in the industry.

●The current version relies on external tools and models, resulting in a relatively long 
performance evaluation runtime.

❑Future Work

●Implement built-in, reduced-order 3D performance evaluation models

●Apply parallel processing for performance evaluation

●Validate 3D MCPM optimization results through hardware validation.
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Conclusions and Future Work
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