

🖀 +1 (479) 575-6043

APEC PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module

Imam Al Razi¹, Dr. David Huitink², Dr. Yarui Peng¹

¹Computer Science and Computer Engineering

²Mechanical Engineering

University of Arkansas

🔜 https://e3da.csce.uark.edu

🖂 ialrazi@uark.edu

- Introduction to Design for Reliability
- PowerSynth (an EDA tool) Introduction

Motivation

Methodology

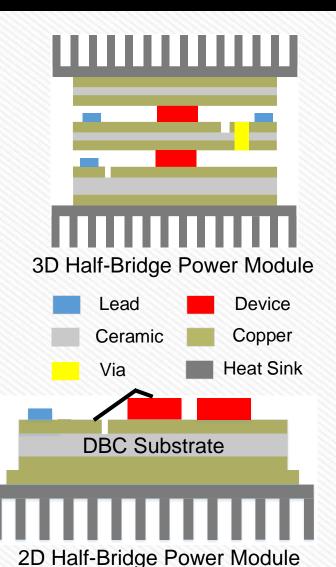
- Optimization Workflow
- Transient Thermal Model

Results

- Model Validation
- Optimization Case Study

Conclusions and Future Works

Design for Reliability



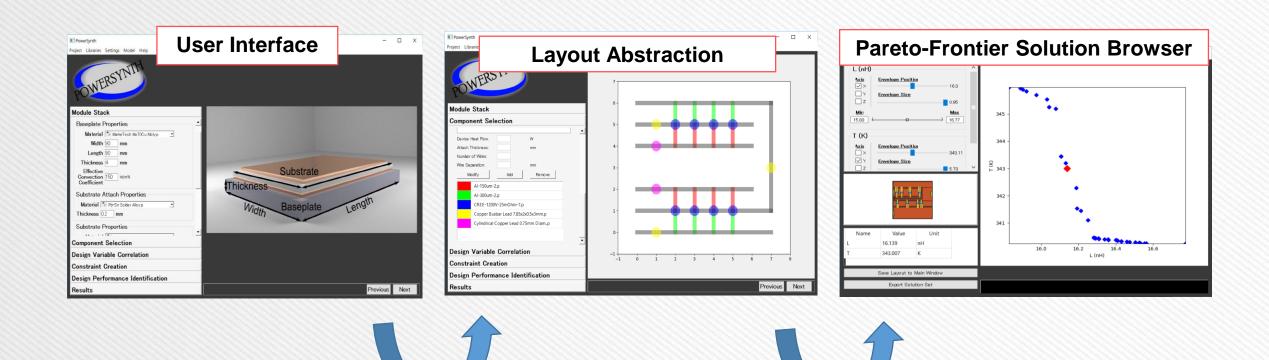
2D/2.5D/3D Multi-Chip Power Module (MCPM)

- Wide application in more-electric world
- Innovative packaging technologies boost power density
- Reliability optimization becomes increasingly challenging
 - Varieties of materials with different CTE are combined
 - Critical components (e.g., solder joints, wire bond, substrate)
 - Thermal management is a challenge with new technologies

Two types of reliability optimization approaches:

- Optimization aiming at specific failures
 - Specific component and connection
 - Physic-based modeling + Finite Element Analysis (FEA)
- Optimization to reduce thermal cycling effects
 - Full module layout
 - Layer stack material and structure

4/28/2021



Layout Synthesis and Optimization

PowerSynth

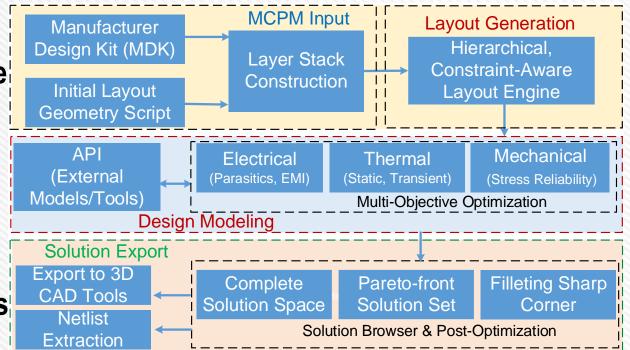
• A software tool for the design and layout of multi-chip integrated power modules

T. M. Evans et al., "PowerSynth: A Power Module Layout Generation Tool," in IEEE Transactions on Power Electronics, 2019.

PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module

UNIVERSITY OF ARKANSAS

PowerSynth Overview


PowerSynth Features:

- MDK ensures manufacturability
- Layer stack parameterization
- Constraint-aware layout engine to generate DRC-clean layouts
- MCPM performance evaluation: fast, accurate and reduced-order electrical and thermal model.
- Electro-thermal reliability optimization
- Easily export design solutions to FEA tools

Release Website:

https://e3da.csce.uark.edu/release/PowerSynth/

- PS v1.x : 2D/2.5D MCPM Optimization
- PS v2+: 2D/2.5D/3D MCPM Optimization

PowerSynth architecture

UNIVERSITY O

ARKA

Motivation and Our Contributions

Motivation

Reliability optimization of MCPM is obvious before fabrication

• Existing methodologies:

- specific part/component failure mechanism/lifetime prediction
- involves time-consuming FEA methodology
- only layer stack material/thickness parameterization
- Imited solution space: placement and routing not considered

Our Contributions:

- Two-step electro-thermal reliability optimization methodology includes:
 - layer stack optimization
 - placement and routing optimization
- Fast, accurate transient thermal model for PowerSynth to predict thermal cycling behavior with phase change material (PCM)
- A comparative study of using PCM to reduce thermal cycling stress

Our Approach

Goal: Optimization to reduce thermal cycling effects

- Improve reliability of the whole module
- Consider both layer stack and layout impact
- Phase change material (PCM) usage:
 - Optimizing location of PCM
 - Optimizing amount of PCM
 - reduce thermal stress due to fluctuations from the thermal cycling

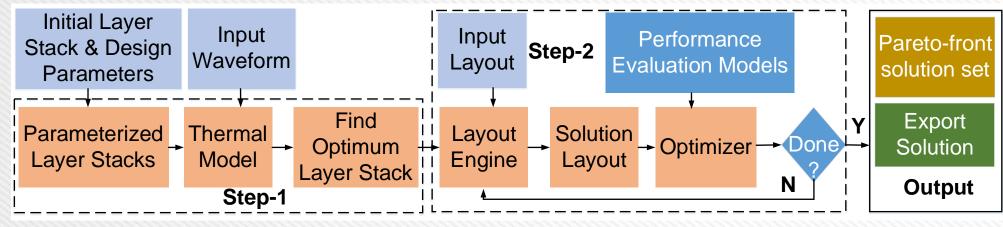
Reliability Performance Metrics:

• Electrical: Power loop inductance, High voltage/current operation

• Thermal:

- Maximum transient temperature: thermal over-stress associated with material limits
- Average temperature: thermal degradation modes
- Peak-to-peak temperature: thermo-mechanical fatigue

Methodology


Two-step optimization flow:

Step-1: Layer stack optimization

Material, thickness variation

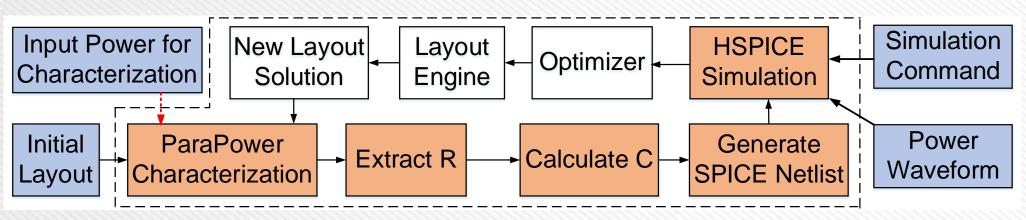
• Step-2: Layout optimization

- Placement of devices & routing of traces
- Variable floorplan sizes

• Newly developed transient thermal model:

- Max, average, peak-to-peak temperature evaluation
- Both static and transient thermal evaluation
- Interaction among three tools

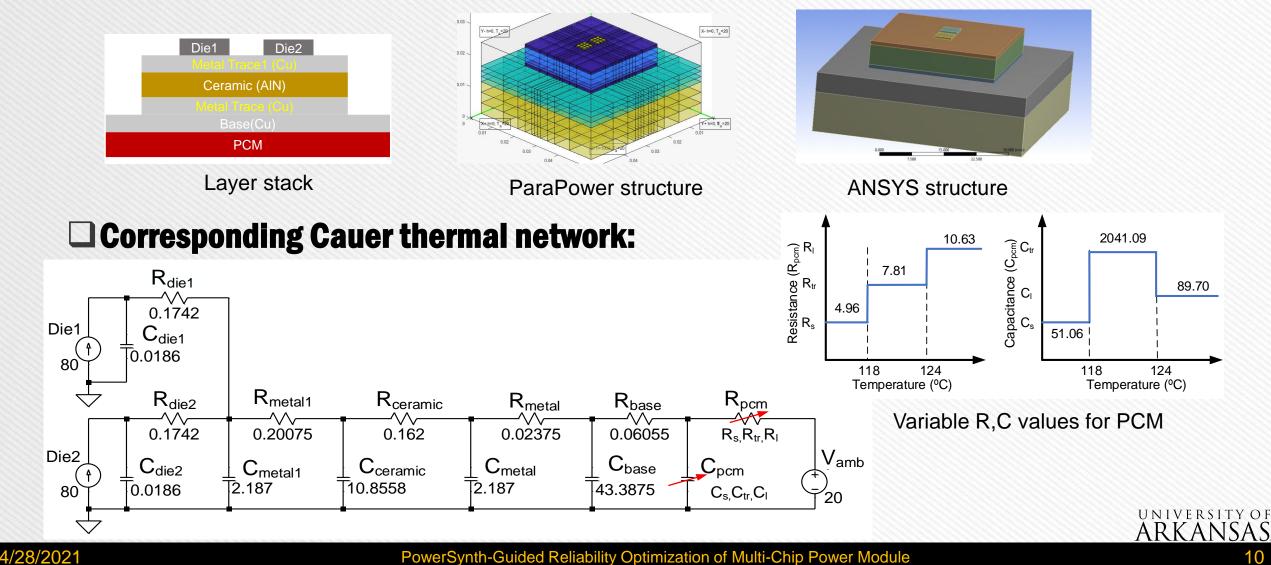
"ARL ParaPower": https://github.com/USArmyResearchLab/ParaPower



PowerSynth Transient Thermal Model

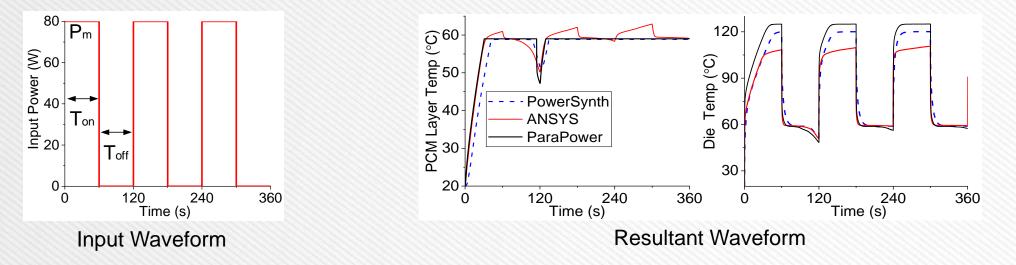
• Newly developed transient thermal model:

- Generic layer stack handling with the latest layout engine of PowerSynth.
- Represents MCPM structure as a cauer thermal RC network
- Thermal resistance (R) extraction through ParaPower characterization
- Thermal capacitance (C) value calculation using material properties.
- PCM is modeled as voltage (temperature) dependent variable R and C.
- HSPICE engine: solves RC-network to produce temperature metrics result
- More capabilities:
 - Performance evaluation under input waveform parameters sweep
 - Find the optimum operating waveform for a given layer stack.



Model Validation

An example layer stack and corresponding validation structure


PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module

Validation Results

Input waveform and Resultant PCM, die layer temperature:

Performance comparison result:

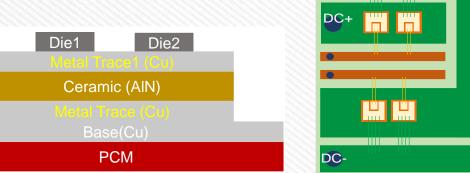
Max Temp. (ºC)	Avg. Temp. (ºC)	P-to-P Temp. (ºC)	Runtime (s)	Speedup	Memory (MB)
110.7	84.87	51.73	11165	1×	3373
125.0	90.64	68.67	35.27	316×	2361
120.1	89.57	61.14	3.2	3489×	315
	(°C) 110.7 125.0	(°C) (°C) 110.7 84.87 125.0 90.64	(°C) (°C) (°C) 110.7 84.87 51.73 125.0 90.64 68.67	(°C) (°C) (°C) (s) 110.7 84.87 51.73 11165 125.0 90.64 68.67 35.27	(°C) (°C) (°C) (s) Speedup 110.7 84.87 51.73 11165 1× 125.0 90.64 68.67 35.27 316×

SAS

IVERSITY OF

ARKA

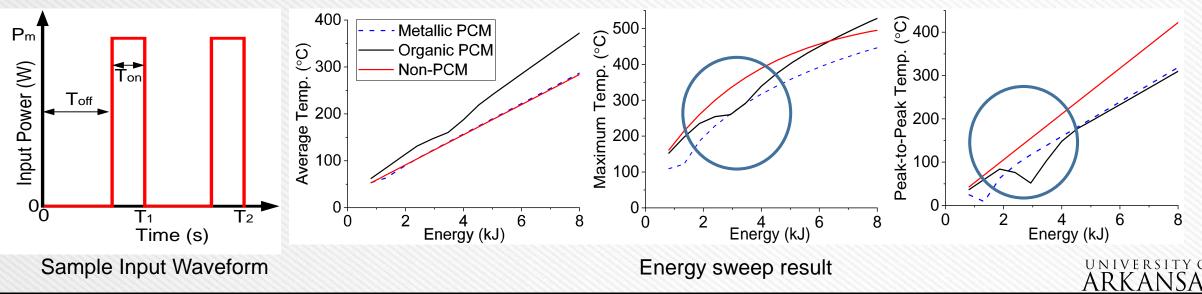
Reliability Optimization Case Study


Out

MCPM layer stack and layout for case study:

- 2D half-bridge power module
- PCM layer is considered

Choosing thermal cycling waveform:


• Energy sweep: Varying Ton & Pm

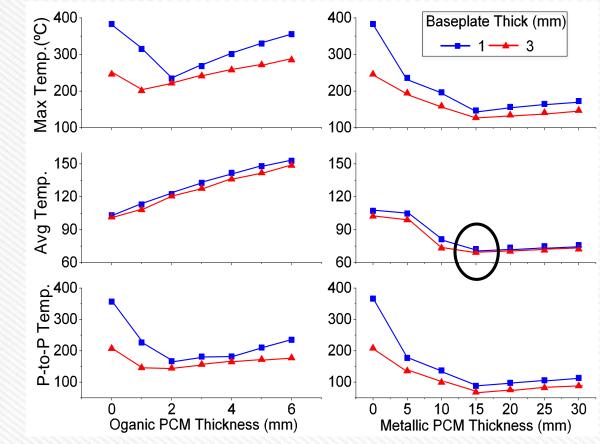
Layer stack

Half-Bridge MCPM Layout

• Optimum waveform (Ton= 60 s, Pm= 40 W) is chosen based on the thermal metrics.

PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module

Layer Stack Optimization


Step-1

Layer stack optimization

Layer	Material	Thickness (mm)	
Baseplate	Copper	1, 3	
РСМ	Fields' Metal (Metallic)	0, 5, 10, 30	
	Erythritol (Organic)	0, 1, 2, 6	

• Optimum layer stack:

- 3 mm Copper baseplate
- 15 mm Metallic PCM

Temperature metrics vs. thickness variation

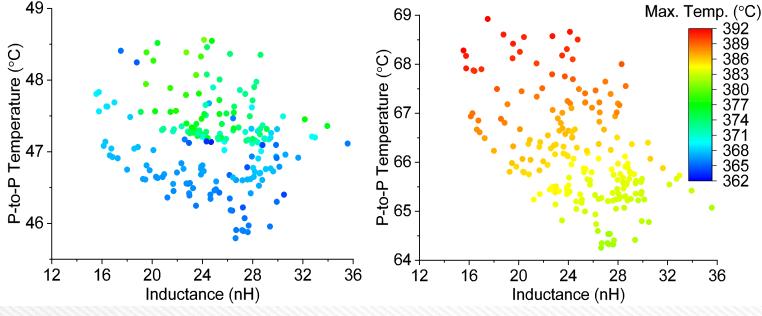
UNIVERSITY OF ARKANSAS

4/28/2021

PCM vs Non-PCM Comparison

Optimum layer stack vs. Non-PCM case

• Layer stack choice:


- 3 mm Copper baseplate with no-PCM
- 3 mm Copper baseplate with 15 mm metallic PCM (optimum layer stack)

Electro-thermal optimization

200 solutions for each

Input waveform:

- between 0 W to 40 W
- 15% duty cycle
- Total runtime:
 - PCM→ ~815 s
 - Non-PCM→ ~147 s
- PCM provides better thermal capacity over non-PCM

Fixed-floorplan size (46 mm × 36 mm) solution space

PowerSynth-Guided Layout Optimization

Step-2

Floorplan Size

(mm × mm)

51 × 61

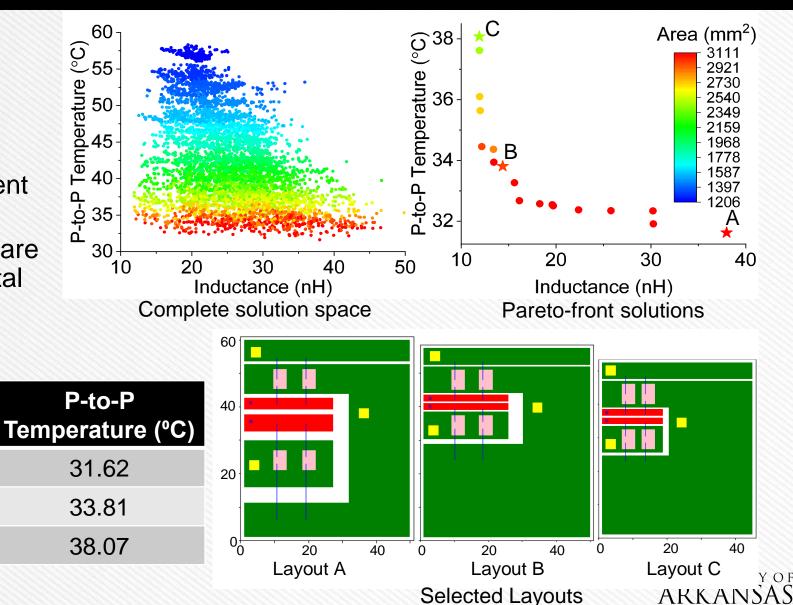
51 × 58.5

 46×53.5

Layout optimization

- Optimum layer stack is considered.
- 6400 solutions with 32 different floorplan sizes.
- For each size, 200 solutions are generated and evaluated (total runtime ~815 s)

Performance Table


Loop Inductance

(nH)

37.98

14.38

11.91

Selected Layouts

ID

Α

Β

С

PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module

Conclusions:

- Two-step methodology is efficient, scalable, and generic
- The transient thermal model has shown 3489 times speedup within 10% accuracy compared to ANSYS simulation results.
- Structure optimization is necessary for best results.
- From the case study, a combination of layout optimization and layer stack tuning can provide performant-yet-reliable solutions.
- A reliability-aware design automation tool can further reduce design efforts and engineering time.

Future Works:

- Mechanical stress will be considered as optimization objective.
- More exhaustive search in the layer stack parameterization will be performed.
- Methodology will be validated against physical measurements.

Any Question?

For more information, please visit E3DA Lab Website:

https://e3da.csce.uark.edu

📙 https://e3da.csce.uark.edu

🖂 ialrazi@uark.edu