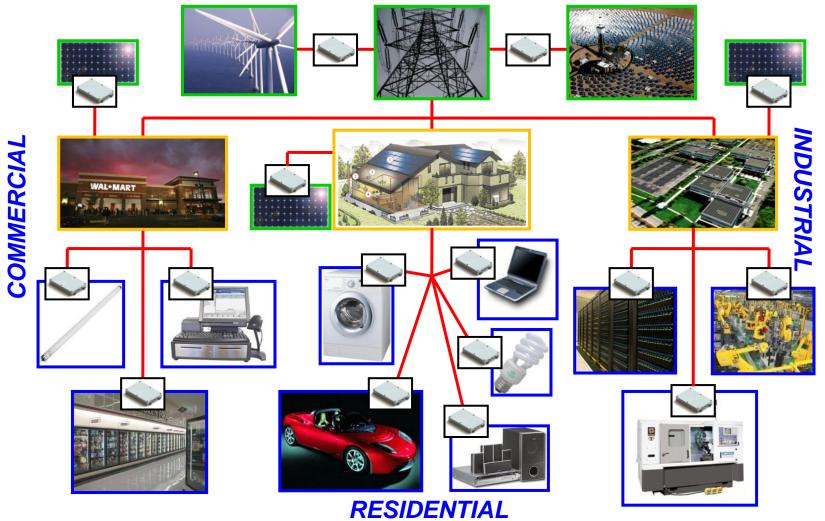


Electronic Design Automation (EDA) Tools and Considerations for Electro-Thermo-Mechanical Co-Design of High Voltage Power Modules

Tristan Evans¹, Shilpi Mukherjee², Yarui Peng³, Alan Mantooth¹ Departments of Electrical Engineering¹, Microelectronics and Photonics², Computer Science and Computer Engineering³ University of Arkansas

College of Engineering *Mixed-Signal Computer Aided Design Research Lab*

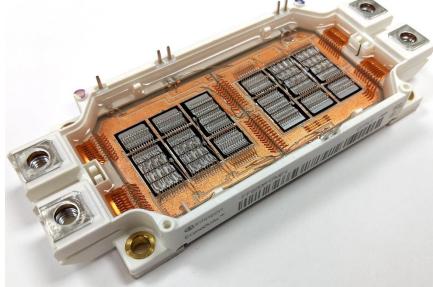
Outline



- Motivation
- PowerSynth Introduction
 - Overview
 - Models
 - High voltage reliability constraints
- ParaPower Introduction
- EDA tool integration
- Co-design example
- Summary

Power Electronics is Everywhere

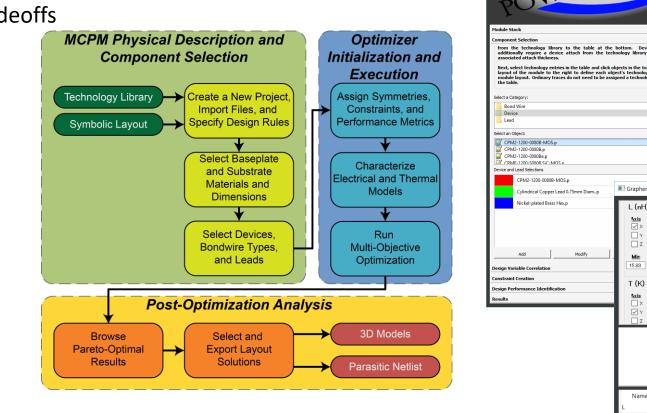
ELECTRIC GENERATION


MCPM Co-Design Challenges

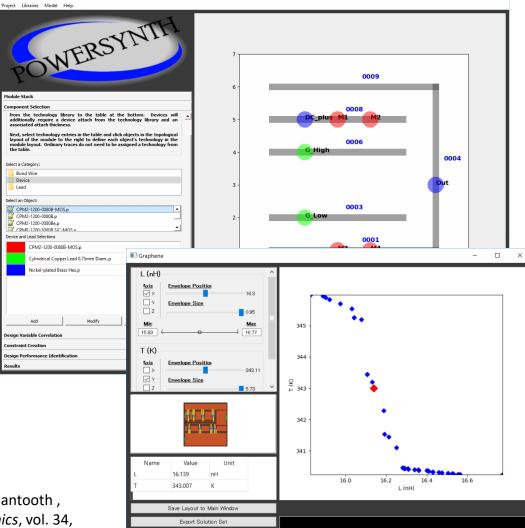
Physical design of multi-chip power modules (MCPM) is time consuming and poses several challenges:

 Multi-domain nature of power electronic packaging necessitates consideration of materials and designs towards reduced:

- Electrical parasitics for high performance devices
- Temperature and mechanical stress for higher reliability
- Traditional design flows are iterative and require extensive use of computationally expensive finite element analysis (FEA)


PowerSynth Overview

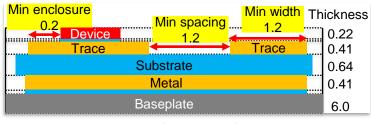
E PowerSynth



- 0

- EDA tool for multi-chip power modules (MCPM)
- Multi-objective layout optimization
- Reduced order models
- Pareto-front of tradeoffs
- Design export

Tristan M. Evans, Quang Le, Shilpi Mukherjee, Imam Al Razi, Tom Vrotsos, Yarui Peng, H. Alan Mantooth, "PowerSynth: A Power Module Layout Generation Tool," in *IEEE Transactions on Power Electronics*, vol. 34, no. 6, pp. 5063-5078, June 2019. doi: 10.1109/TPEL.2018.2870346 Highlighted Paper


PowerSynth Manufacturer Design Kit (MDK) and Technology Library

Layer Stack

- Input file describing layers and technologies
- Holds information pertaining to
 - Layer width, length, and thickness
 - Layer material properties

MDK and Design Rules and Checker (DRC)

- Input file containing technologydependent design and processing rules
- Ensures feature sizing and component placement are within processing tolerance

MCPM layer stack

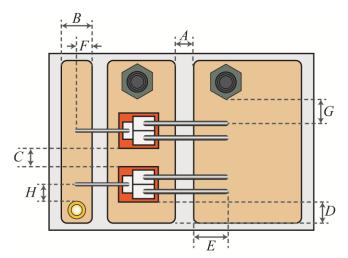
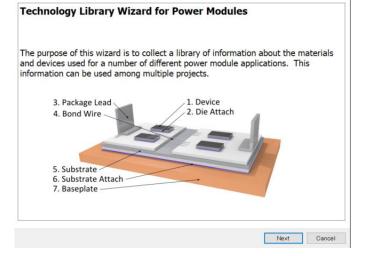
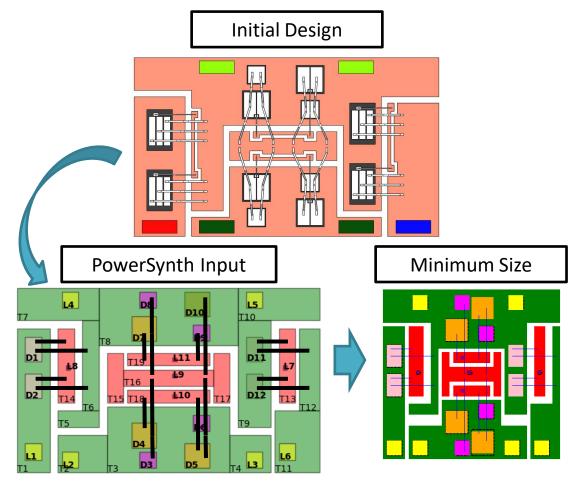



Illustration of design rules pertaining to feature placement and minimum spacing



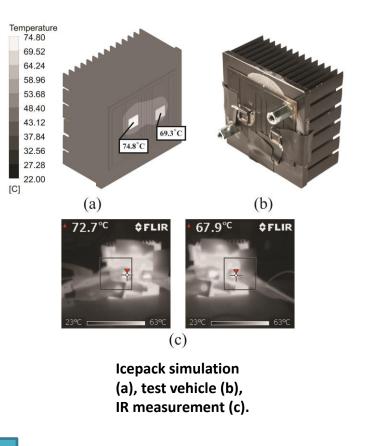
PowerSynth technology library wizard

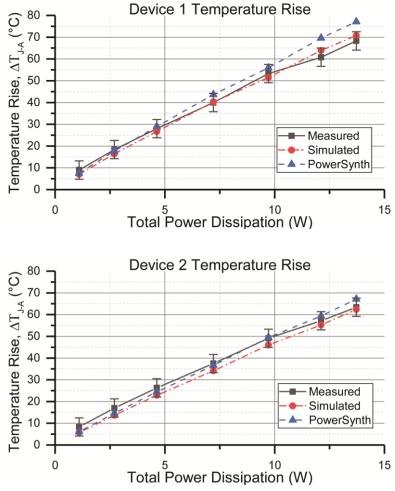
PowerSynth Layout Engine

- Constraint aware, hierarchical layout engine
- Minimum trace gaps set by trace-to-trace potential difference
- Heterogeneous component support
- Fixed or minimum layout size capabilities

I. Al Razi, Q. Le, H. A. Mantooth, and Y. Peng, "Constraint-Aware Algorithms for Heterogeneous Power Module Layout Synthesis and Reliability Optimization." in 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2018, pp. 323-330.

PowerSynth Thermal Model


Fast Thermal Model


- Lumped element heat transfer system composed of thermal resistances
- Single FEA sim for characterization
- Includes mutual heating and proximity effects

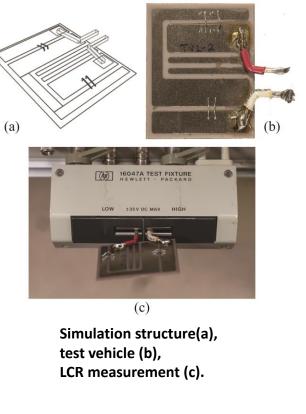
Device temperature rise results

- PowerSynth thermal model, Icepak, and thermal camera measurement comparison
- Average error of 4% when compared to simulation or measurement

PowerSynth accuracy within 10% but 8000x faster than FEA

Thermal model validation results for device 1 (above) and device 2 (below) of the test vehicle over a range of power dissipation levels

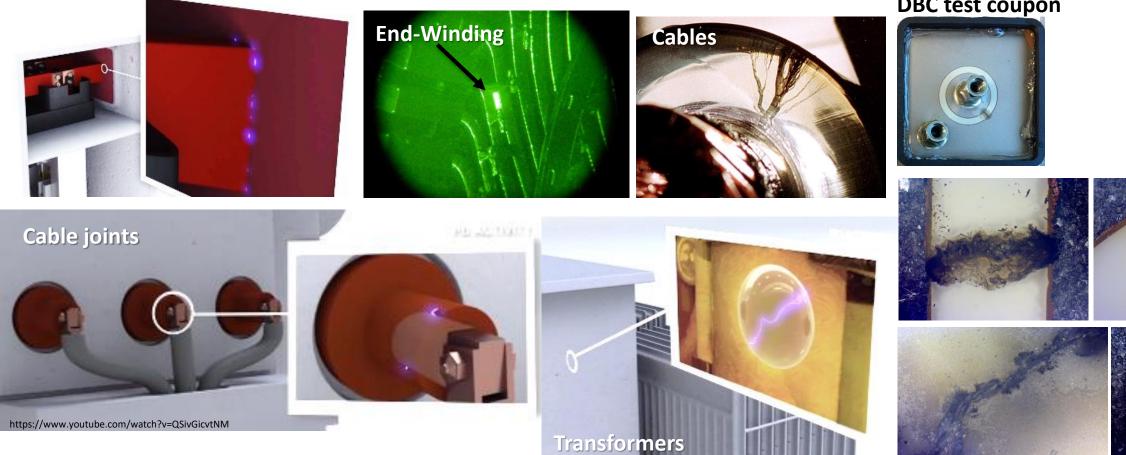
PowerSynth Electrical Model


Response surface model (RSM) for parasitics

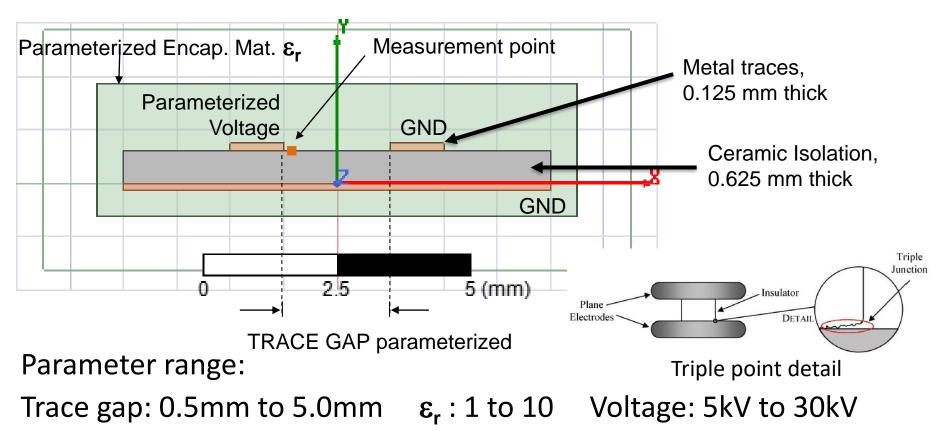
- Based on partial element equivalent circuit method (PEEC)
- Uses FastHenry to run parametric simulations for a given substrate technology
- Maps trace dimensions and vertical separation to resistance and inductance values

Resistance and inductance results

- Test vehicle layout parasitics compared among PowerSynth, FastHenry, and LCR meter measurement
- PowerSynth model error <10% with both simulation and measurement

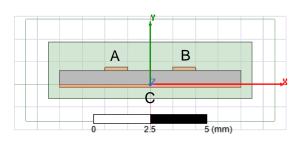

RSM parasitics calculation is accurate and up to 6000 times faster than simulation

Partial Discharge (PD) and High Voltage Reliability

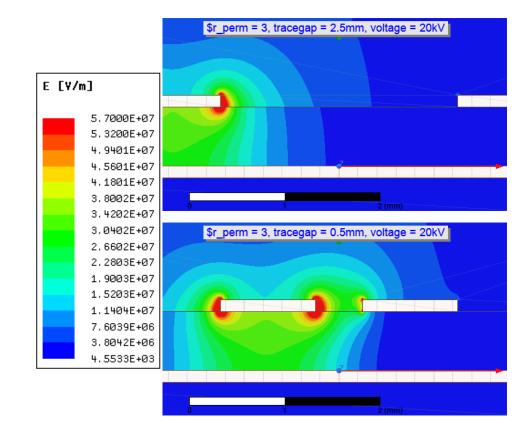


DBC test coupon

2D Electric Field Simulation Setup


Model geometry

2D Electric Field Simulations



Model geometry

Parameter range:

Trace gap: 0.5mm to 5.0mm step size: 0.5mm ϵ_r : 1 to 10 step size: 1 Voltage: 5kV to 30kV step size: 5kV

2D Electric Field Simulation Results

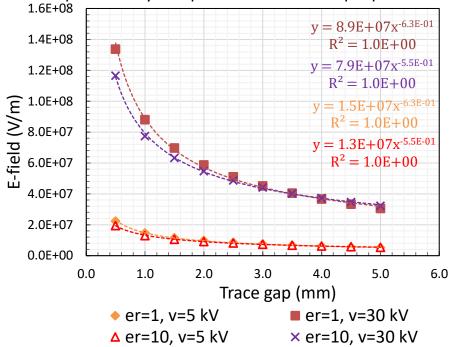
General form of equation

Power curves

$$E = f(v, \varepsilon_r) x^{-g(v, \varepsilon_r)}$$

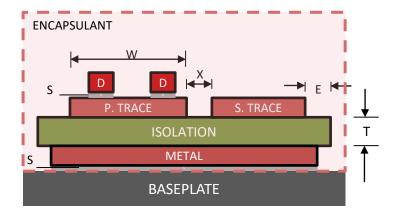
Where

E is the electric field in kV/mm,


v is the voltage in kV,

x is the gap between traces A and B in mm,

 ε_r is the relative permittivity of the encapsulating material

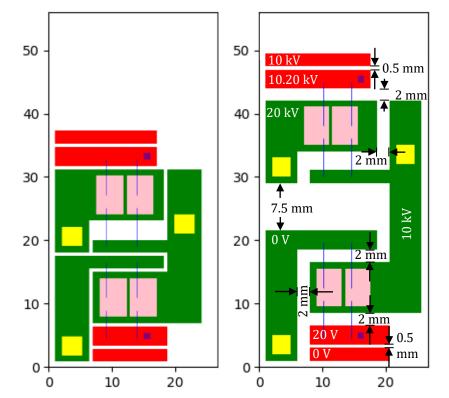

f and g are functions of v and ε_r .

E-field vs. trace gap for corner cases of the parametric sweep of voltage and relative permittivity at a point close to the triple point

Implementation in PowerSynth

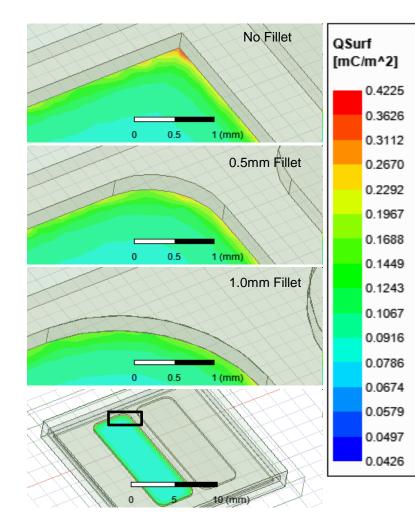
W: lateral width of trace

- X: lateral trace gap
- E: minimum enclosure

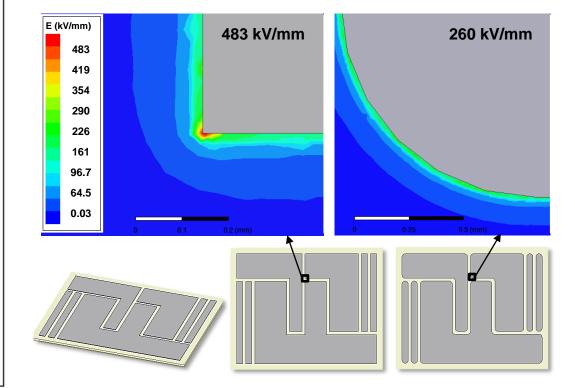

T: vertical thickness of a layer

D: device

P. trace: power trace; S. trace: signal trace

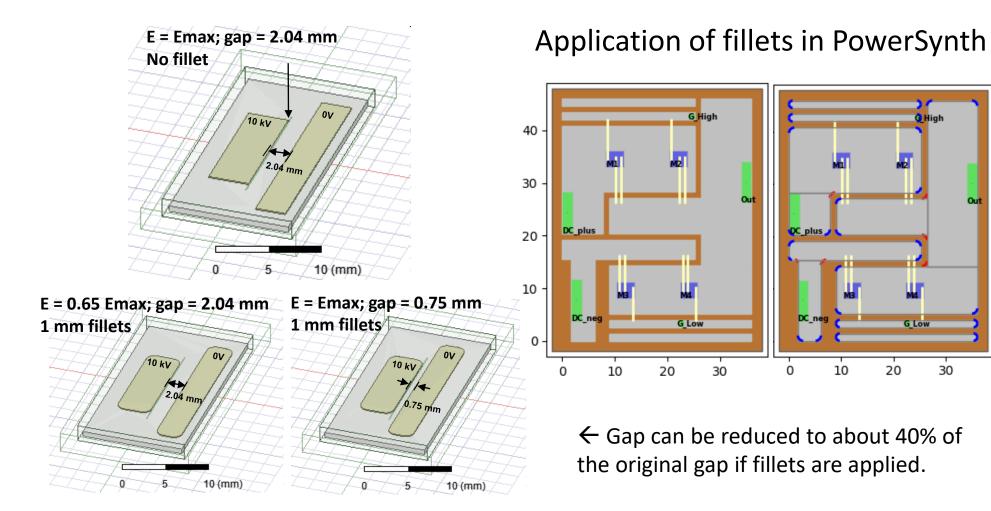

S: substrate attach or die attach

Default layout vs. Layout with design rules applied



Effect of Filleting Sharp Corners

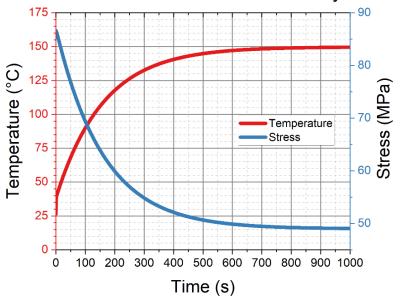
E-field and Q_s are almost halved


IEEE ENERGY CONVERSION CONGRESS & EXPO

Bottom view Top view D: Static Structural Equivalent Stress 2 Max stress = 301 MPa Type: Equivalent (von-Mises) Stress Unit: Pa Time: 1 7/15/2020 1:12 PM 3.0092e8 Max 2.7491e8 Max Sharp 2.4889e8 2.2288e8 1.9686e8 1.7085e8 1.4483e8 1.1882e8 0.02 (m) 9.2805e7 0.01 0.02 (m) 0.005 0.015 6.6791e7 Min 0.005 0.015 F: Static Structural_fillet Equivalent Stress 2 Max stress = 247 MPa; 18% reduction. Type: Equivalent (von-Mises) Stress Unit: Pa Time: 1 Fillet 7/15/2020 1:09 PM 2.4744e8 Max 2.287e8 2.0997e8 1.9123e8 1.7249e8 1.5375e8 1.3501e8 1.1627e8 0.005 0.015 0.02 (m) 9.7536e7 7.8798e7 Min 0.005 0.015

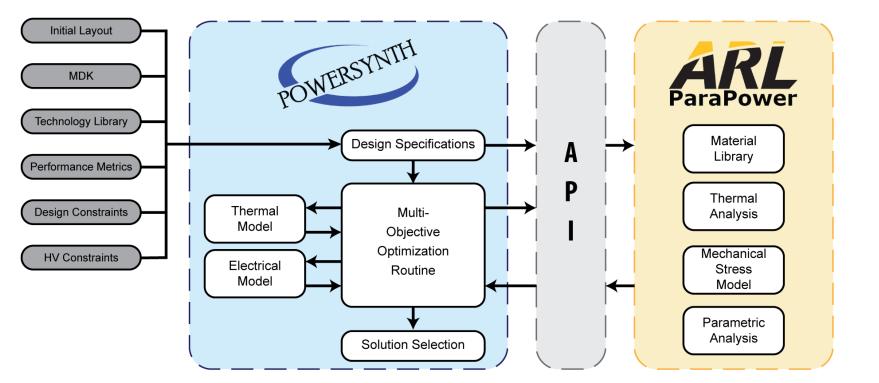
Filleting Reduces Mechanical Stress

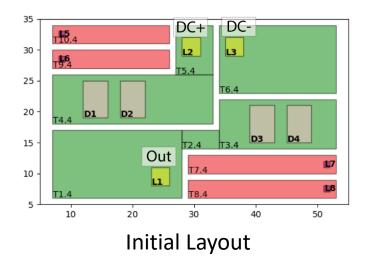
Effect of Filleting Sharp Corners with PowerSynth


ParaPower Overview

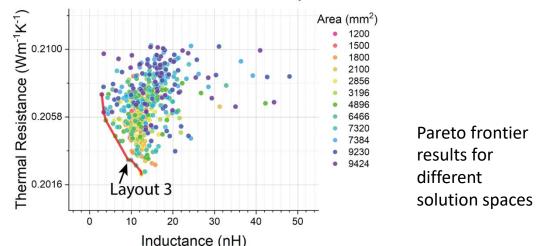
- Open source co-design tool by US Army Research Lab
- Fast, thermomechanical analysis of power electronics modules
- Parametric analysis tools
- Support for phase change materials

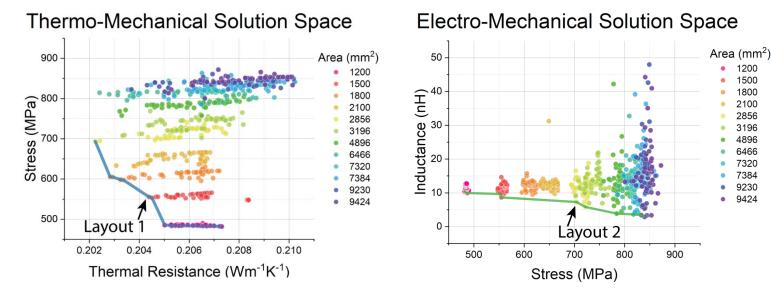
ARL ParaPower Environmental Parameters									Initial Temperature (C): 20							
ersior	n 0.4.0.0		X- Face	X+ Face	/- Face Y+	Face Z- Fa	ce Z+ Face	e						· · _	20	
	,		h ⁰	0 0	0	100	0				Proc	ess Temp	perature (C) :	23)
UU	EVCO	M	Ta 20	20 20) 20	20	20			0	Static	Analysis	۲	Transi	ent Analysis	5
<u> </u>	ARMY RESEARCH											Time	Step (s	ec):	0.1	
Par	aPowe	er									N	lumber of	Time Ste	eps:	100	00
													Total Ti	me =10	00 sec	
efine	e Features															
						10 ()	70 ()					0.010			Analy	sis
-	Dese Basepla		(mm) Y1 (mm) 0) Z1 (mm) 0	X2 (mm) 60	Y2 (mm) 60	Z2 (mm)	Material Cu v		Q Typ calar	>e > 0	Q (W)	Num I	2	Loa	d Profil
1	SubAtta		6	4	48	53	4.2			calar	~ 0		1	<u>^</u>		
3	SubBac		6	4.2	48	53	4.4			calar	~ 0		1		Sa	ve Profil
4	SubCera		5	4.4	50	55	5.04			calar	~ 0		1			
5	то	11	6	5.04	49	15.049809	5.24	Cu 🗸	s	calar	~ 0		1		CI	ear GUI
6	🗌 T1	11	16.246980	9 5.04	49	29.045481	. 5.24	Cu v	S	calar	~ 0		1	~	Pa	rameter
	< Arrange	Delet	e Insert I	Move Down	Move Up			Material L	.ist		Up	odate Mod	> lel / Vis			Help
	Arrange				Move Up		Detailed V	/isual Res					lel / Vis			
	Arrange Geometry		e Insert I action (Case 1		Move Up Ga Al Cu AlM		Tempe "View (/isual Res erature (3D)" button Time Step C	plot:	s geor ut: 0	tress	f no boxes	lel / Vis	cked.	View Pk Plot	(3D) s (2D)
	Arrange Geometry				Ga		Tempe "View (/isual Res erature (3D)" button	plot:	s geor ut: 0	tress	f no boxes	lel / Vis	cked.		(3D) s (2D)
	Geometry				Ga Al Cu AlN		Tempe "View (/isual Res erature (3D)" button Time Step O Time of Inte	plot:	s geor ut: 0	tress netry i	f no boxes	lel / Vis	cked.	Pk Plot	(3D) s (2D)
)6	Geometry	Visualiz		Only)	Ga Al Cu AlN B		Tempe "View (/isual Res erature (3D)" button Time Step C Time of Inte	plot:	s geor ut: 0	tress netry i	f no boxes	lel / Vis	Proc.	Pk Plot	(3D) s (2D)
)6	Geometry			Only)	Ga Al Cu AlN		Tempe "View (/isual Res erature (3D)" button Time Step O Time of Inte	plot:	s geor ut: 0	tress netry i	f no boxes	lel / Vis	Proc.	Pk Plot	(3D) s (2D)


Transient Thermo-Mechanical Analysis

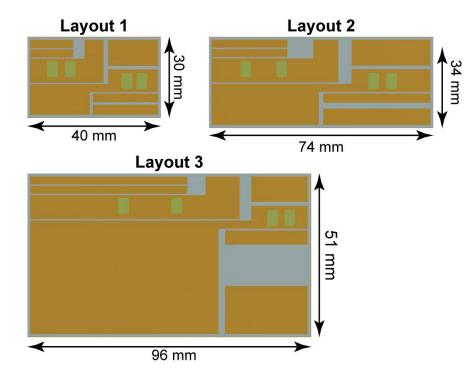

API to leverage:

- PowerSynth layout generation and electrical parasitics extraction
- ParaPower 3D thermo-mechanical analysis


Co-Design Example (1/2)



- Half bridge layout
- Loop inductance from DC+ to DC-
- 10 W power dissipation/die, 25°C backside temperature
- 230°C process temperature, -40°C minimum ambient temperature


Electro-Thermal Solution Space

Co-Design Example (2/2)

Layouts performance metrics

	Dimensions (mm)	Inductance (nH)	R _{TH} (Wm ⁻¹ K ⁻¹)	Stress (MPa)
Layout 1	40x30	9.93	0.204	556
Layout 2	74x34	7.23	0.206	704
Layout 3	96x51	9.26	0.203	816

Layouts selected from solution space

Summary and Future Work

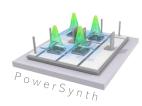
- EDA tools for power electronics gaining momentum
- Integration of PowerSynth and ParaPower enhances capabilities of both
- Layout engine updated with high voltage reliability constraints
- Co-design methods being used to rapidly explore design space tradeoffs
- Continued development:
 - Enhance models
 - Toward 3D and heterogeneous layout
 - Reliability assessment

Acknowledgements

Power Optimization of Electro Thermal Systems (POETS) An NSF ERC US Army Research Laboratory

Tristan Evans tmevans@uark.edu

Shilpi Mukherjee sxm063@uark.edu



Dr. Yarui Peng yrpeng@uark.edu

Dr. Alan Mantooth mantooth@uark.edu

