

Holistic 2.5D Chiplet Design Flow: A 65nm Shared-Block Microcontroller Case Study

MD Arafat Kabir, Yarui Peng Computer Science and Computer Engineering Department University of Arkansas, Fayetteville, AR, US

🖀 +1 (479) 575-6043

Package becomes increasingly critical in post-Moore's Law era

- Sizes of modern chips (GPU, FPGA, TPU, etc.) are reaching reticle limit.
- 2.5D and 3D packages provide high bandwidth and compact size.

2.5D packaging opens a new door of opportunities

- Novel design techniques like plug-and-play, Drop-in, Hardware security
- Heterogenous integration capabilities (AMD EPYC2, Intel Lakefield)

Need for a cross-boundary package-aware design strategy

- Interactions between the package and chiplets are significant
- Optimization goals for 2.5D system are different: inductance, signal integrity, thermal, reliability, cost, turnaround time, flexibility, etc

Objectives

- Application of our holistic design flow in commercial technologies.
- Design and study of a system designed in our flow in 65nm technology in the system designed in our flow in 65nm technology.

Traditional die-by-die design flow can achieve the shortest possible 2.5D system design time using off-the-shelf chiplets.

- Cannot ensure the maximum performance and highest reliability
- Package routing can get complicated due to its pin-dominated nature

□ Need for a cross-boundary package-aware design strategy:

- Timing optimization needs to be accounted in a holistic way
- Partition tool needs to be aware of the delay introduced by redistribution layers (RDLs) with detailed parasitic extraction
- Package planning tool may need to modify chiplet pin arrangement to optimize RDL routing and package flooplan
- Chiplet timing optimization steps need to be aware of package wires.
- The analysis tool needs to consider the chiplets and package interactions altogether.

We incorporate the missing necessary interactions between package and chiplets during design, optimization and analysis steps.

Holistic top-level planning of the entire system

Maintaining parallelism in implementation of individual component

Capturing interactions among all the components of the system in optimization and analysis

12/4/2020

4

UNIVERSITY OF

ARKAN

Overall Flow

Our flow consists of partitioning, top level planning, individual implementation of components, design assembly and analysis.

- Gate-level netlist is generated by synthesis tool.
- The system is partitioned into chiplets.
- Chiplet-Package co-planning determines the package floorplan and chiplet pin configurations.
- Top-Level plan consists of package floorplan, RDL routing, chiplet pin configurations.
- Chiplets and package are implemented independently with top-level constraints
- Everything is assembled for overall optimization and verification

System architecture of proof-of-concept design

Microcontroller system based on ARM Cortex-M0 core

16KB RAM with some common peripheral devices

U We use TSMC 65nm as our PDK and ARM IP for implementation

- M1-M6 used for chiplet internal routing
- Standard Cells and Memory compiler from ARM

U We modify the top three layers to include 2.5D package RDLs

Dimensions are similar to the TSMC 2.5D InFO technology

Layer	Purpose	Width	Spacing	
M1-M6	Intra-Chiplet routing	Original	Original	
M7	AP	5 µm	5 µm	
M8	RDL1	5 µm	5 µm	
M9	RDL2	5 µm	5 µm	
AP	Solder Pads	Original	Original	

2.5D system and the reference 2D system are designed to be taped out in a single die

- Shared die tape-out is performed to save pin area and fulfill minimum area requirement of the foundry.
- Two systems share the same I/O ring.
- An I/O multiplexer module controlled from outside decides which system can communicate to the I/O ring.

Holistic 2.5D Chiplet Design Flow: A 65nm Shared-Block Microcontroller Case Study

UNIVERSI

Reference 2D Design

For comparative study, we implemented the microcontroller as a 2D system using conventional 2D chip design flow

Only with 16KB mem flavor

External I/Os connected to the I/O muxing module

The partition tool needs to account for package RDL wires while exploring solutions.

We partition the system into two chiplets.

- We tested different partition schemes and settled with an architectureaware partition scheme.
- We selected this custom partition scheme to meet the area required to accommodate the pins of both chiplets.

Parameter	Core-Chiplet	Mem-Chiplet
Logic Cell #	20,206	0
Macros	6	2
Area (µm²)	179,655	72,826
Area Balance	71.16%	28.84%
Pin Count	141	101

NIVERSITY OF RKANSAS

Co-Planning Strategy

In-house RDL planning tool implements our planning strategy.

Our planning strategy,

- Package floorplan and routing are determined before signal assignment
- Use of short & straight wires to route the chiplet pins
- Signal assignments of pins are determined from package routing and timing report from synthesis tools

12/4/2020

After top level planning, chiplets and package are implemented independently with constraints propagated from top-level

- Top level design is divided into hierarchical sub-designs.
- Chiplet floorplan and PDN are finalized.
- Chiplet implementation is the same as conventional 2D chip that includes power planning, placement, time design, routing and post routing optimizations.

Package is implemented according to the top-level plan and assembled with chiplet desigs for holistic extraction.

- Only inter-chiplet signals are routed on the RDLs. Due to shared-die design, the external I/O are routed to the I/O multiplexing module and are routed separately on M7.
- As the design environment has everything together, holistic extraction can capture all the interactions between chiplets and package.

Chiplet-Package coupling capacitance

- The columns for RDL1 and RDL2 show the coupling capacitance between package layers and chiplet layers (in fF).
- M6 and RDL1 are extracted with considerations from the other side
- RDL1 has greater coupling with M5 compared to M6
- This extraction result can be utilized to optimize signal integrity

	M1-M3	M4	M5	M6	AP	RDL1	RDL2
M1-M3	7505.6	2494.7	1389.3	38.0	0.3	13.3	0.8
M4	2494.7	2445.3	648.8	150.7	1.5	12.8	0.4
M5	1389.3	648.8	2756.7	90.0	1.3	40.8	4.9
M6	38.0	150.7	90.0	190.6	8.6	31.1	6.8
AP	0.3	1.5	1.3	8.6	0.0	0.6	0.1
RDL1	13.3	12.8	40.8	31.1	0.6	10.8	146.2
RDL2	0.8	0.4	4.9	6.8	0.1	146.2	33.8

Chiplet analysis results

- Analysis captures the impact of RDLs on system performance.
- Maximum system frequency of 2D system is 125 MHz
- For the 2.5D system the highest system frequency achieved is 100 MHz
- P&R tool inserted buffers to drive package wires
- The 27 cells in Mem-Chiplet are buffers driving the package wires.

Chip Design	2D System	Core Chiplet	Mem Chiplet
Standard Cells #	20,061	20,096	27
Total Chip WL	544.70	478.57	12.96
Die Size (µm x µm)	475 x 725	520 x 475	415 x 230
Frequency	125 MHz	100 MHz	
Chip Power	7.0 mW	5.12 mW	0.718 mW

Die Level Design

For fabrication, we combined the 2D system and the 2.5D system containing both chiplets into a single GDS and performed signoff verifications.

- Had adjust the wide top wires (RDL) for antenna rules
- Had to use special filler cells in the empty space between the systems and chiplets to satisfy some density requirements.

Functionality test was performed on the fabricated chip

- Test vectors were generated and the chip responses were captured using a logic analyzer.
- Both systems passed the verification tests.

	Sync Pu	lse	k
Name Pin T 4090	Pulse Protocol	Count Dowr	n at port P1
7 [MSB] DIO 7 6 DIO 6 5 DIO 5 4 DIO 4 3 DIO 3 2 DIO 2			
1 DIO 1 0 [LSB] DIO 0			

Chip testing waveforms

Packaged Chip

Conclusions & Future Work

Conclusions

- Chiplet-Package interactions need to be considered in 2.5D systems
- Our flow effectively captures the impact of RDLs in optimization and analysis steps.
- It incorporates necessary interactions between package and chiplet designs for holistic planning and optimization.
- The flow is suitable for homogeneous designs with existing commercial chip design technolgies.

Future Works

- Extending the flow to include design optimization steps that utilizes the holistic extraction results.
- New tools/techniques based on in-context design strategy need to be developed to support heterogeneous designs.
- Chiplet-Package inductance impact on PPA and noise

Thank You

L http://csce.uark.edu

+1 (479) 575-6043

makabir@uark.edu