Physical Design Automation for High-Density 3D Power Module Layout Synthesis and Optimization

Imam Al Razi1, Quang Le2, H. Alan Mantooth2, Yarui Peng1

1Computer Science and Computer Engineering
2Electrical Engineering
University of Arkansas
Manual Design Flow

- Tedious and computationally expensive design flow

Our Approach: PowerSynth

- A software tool for the layout synthesis and optimization of multi-chip power modules [1].

Already demonstrated:
- 2D and 2.5D heterogeneous power module optimization capability.

To increase the power density:
- 3D heterogeneous power modules optimization are obvious.

Feature Update:
- 3D power module layout generation and optimization.

Three types of layouts handled by PowerSynth:
- 2D layout: One device layer with routing layers on the same substrate
- 2.5D layout: Multiple 2D designs connected on a supporting 2D plane
- 3D layout: Multiple device layers stacked vertically on the same substrate
PowerSynth 2 Methodology

- **Layout Representation:**
 - Multiple 2D layers connected with vertical vias

- **Data Structure and Algorithms:**
 - Hierarchical tree structure of corner-stitched planes

- **Layout Generation:**
 - Hierarchical constraint graphs
 - Guarantee DRC-clean solutions

- **Layout Optimization:**
 - Efficient models
 - Electrical/thermal/mechanical
 - Optimization algorithms
 - Tradeoff among multi-objectives

High-level pseudocode:

```
Read Input Script
Create a root node
Create group of layers connected with same via

For each group
  Create a sub-root in the tree containing via location
  For each layer
    Create HCS, VCS
    Create and Evaluate HCG, VCG

For each ancestor from leaf to root
  Perform bottom-up constraint propagation
  Evaluate root node and compute available space

For each sub-tree from root to leaf
  Perform top-down location propagation

Evaluate independent nodes

HCS/VCS: Horizontal/Vertical Corner Stitch
HCG/VCG: Horizontal/Vertical Constraint Graph
```
3D Layout Generation Results

2D vs. 3D Performance Comparison:

- Initial layout:
 - Half-bridge MCPM: 2D structure (left), 3D structure (right)

<table>
<thead>
<tr>
<th>Performance Metric</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Inductance (@100 KHz)</td>
<td>15.93 nH</td>
<td>6.104 nH</td>
</tr>
<tr>
<td>Max Temperature</td>
<td>332.15 K</td>
<td>370.29 K (single-side cooling)</td>
</tr>
</tbody>
</table>

(a) 2D layout (b) 3D power loop, (c) high-side (Layer 1) and low-side (Layer 2) layers of 3D layout
3D Layout Optimization Results

3D Layout Optimization:
- Initial Layout:
- Electro-thermal evaluation:
 - ParaPower [2] thermal model
 - FastHenry electrical model
- Optimization:
 - 2400 solutions are generated
 - 0.08s per solution generated

Solution Space:

<table>
<thead>
<tr>
<th>ID</th>
<th>L (nH)</th>
<th>T (K)</th>
<th>Size (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.44</td>
<td>334.11</td>
<td>34.5 × 16.5</td>
</tr>
<tr>
<td>B</td>
<td>1.22</td>
<td>328.13</td>
<td>37.0 × 24.0</td>
</tr>
<tr>
<td>C</td>
<td>2.43</td>
<td>324.62</td>
<td>42.0 × 26.5</td>
</tr>
</tbody>
</table>

Conclusions:

- Generic and efficient algorithms to handle both intra-layer and inter-layer connections.
- Able to handle arbitrary number of layers in an efficient manner.
- This methodology is generic and can be extended towards cabinet-level optimization.

Future Work:

- Update the algorithm for generic 3D layout cases and validate through measurements.
- Customized optimization algorithm to find a better tradeoff among multiple objectives.
- PowerSynth v2.0 release.