

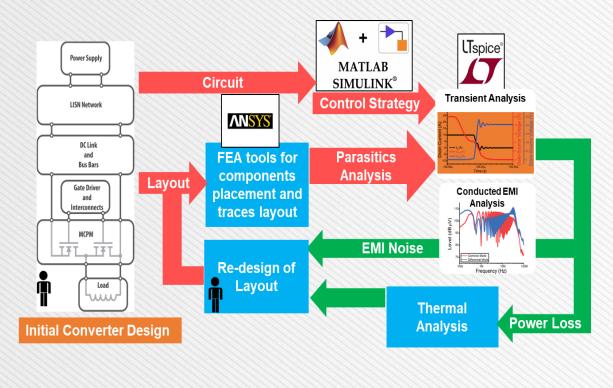
Physical Design Automation for High-Density 3D Power Module Layout Synthesis and Optimization

Imam Al Razi¹, Quang Le², H. Alan Mantooth², Yarui Peng¹

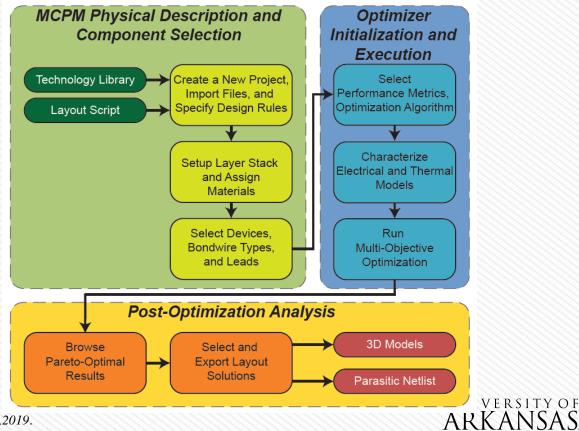
¹Computer Science and Computer Engineering

²Electrical Engineering University of Arkansas

UNIVERSITY O



Traditional vs. Automatic Design Flow


Manual Design Flow

 Tedious and computationally expensive design flow

Our Approach: PowerSynth

• A software tool for the layout synthesis and optimization of multi-chip power modules [1].

[1] T. M. Evans et al., "PowerSynth: A Power Module Layout Generation Tool," in IEEE Transactions on Power Electronics, 2019.

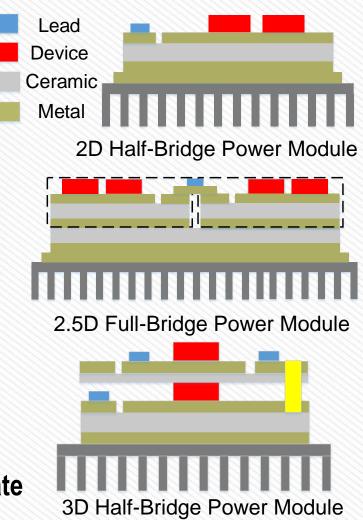
Physical Design Automation for High-Density 3D Power Module Layout Synthesis and Optimization

PowerSynth 2 Introduction

Already demonstrated:

2D and 2.5D heterogeneous power module optimization capability.

$\hfill\square$ To increase the power density :


3D heterogeneous power modules optimization are obvious.

Given Seature Update:

3D power module layout generation and optimization.

Three types of layouts handled by PowerSynth:

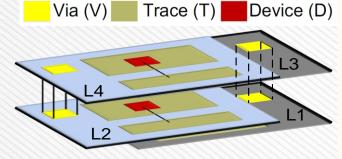
- 2D layout: One device layer with routing layers on the same substrate
- 2.5D layout: Multiple 2D designs connected on a supporting 2D plane
- 3D layout: Multiple device layers stacked vertically on the same substrate

PowerSynth 2 Methodology

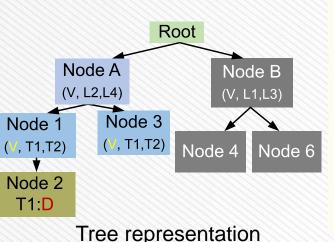
Layout Representation:

Multiple 2D layers connected with vertical vias

Data Structure and Algorithms:


 Hierarchical tree structure of corner-stitched planes

□ Layout Generation:


- Hierarchical constraint graphs
 - Guarantee DRC-clean solutions

Layout Optimization:

- Efficient models
 - Electrical/thermal/mechanical
- Optimization algorithms
 - Tradeoff among multi-objectives

Sample 3D structure

□ High-level pseudocode:

Read Input Script Create a root node Create group of layers connected with same via

For each group Create a sub-root in the tree containing via location For each layer Create HCS, VCS Create and Evaluate HCG, VCG

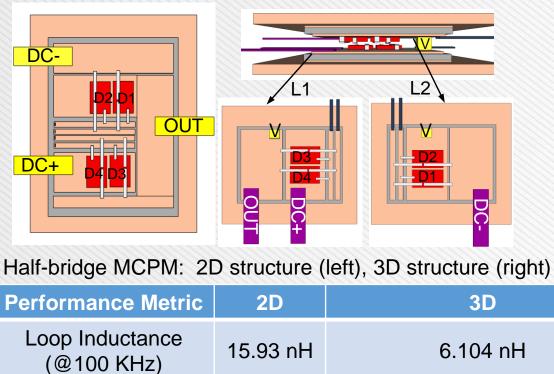
For each ancestor from leaf to root Perform bottom-up constraint propagation Evaluate root node and compute available space

For each sub-tree from root to leaf Perform top-down location propagation

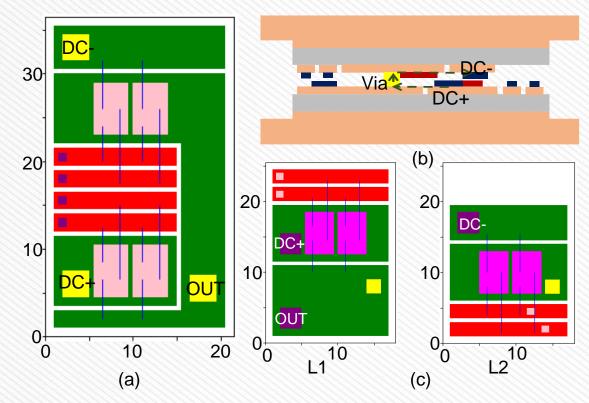
Evaluate independent nodes

HCS/VCS: Horizontal/Vertical Corner Stitch HCG/VCG: Horizontal/Vertical Constraint Graph

AKKANSA



3D Layout Generation Results


2D vs. 3D Performance Comparison:

• Initial layout:

332.15 K

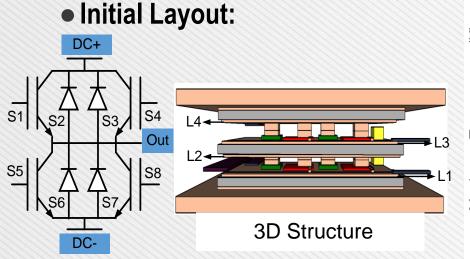
• Min-sized Result:

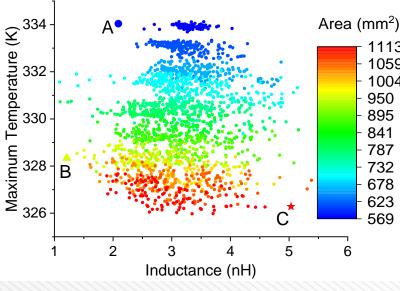
(a) 2D layout (b) 3D power loop, (c) high-side (Layer1) and low-side (Layer 2) layers of 3D layout

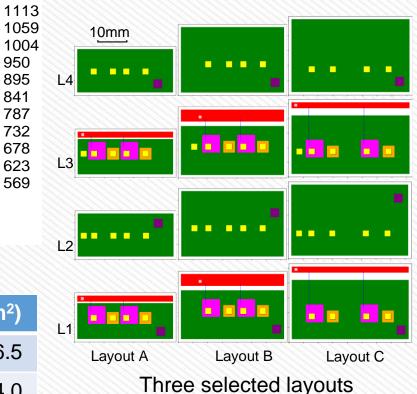
Max Temperature

370.29 K (single-side cooling)

328.38 K (dual-side cooling)


UNIVERSITY OF


3D Layout Optimization Results



□ 3D Layout Optimization:

• Solution Space:

Electro-thermal evaluation:

- ParaPower [2] thermal model
- FastHenry electrical model

• Optimization:

- 2400 solutions are generated
- 0.08s per solution generated

[2] "ARL ParaPower" :https://github.com/USArmyResearchLab/ParaPower

Penormance values												
	ID	L (nH)	Т (К)	Size (mm ²)								
	А	1.44	334.11	34.5 × 16.5								
	В	1.22	328.13	37.0 × 24.0								
	С	2.43	324.62	42.0 × 26.5								

Darformanco valuos

UNIVERSITY O ARKANSAS

Conclusions and Future Works

Conclusions:

- Generic and efficient algorithms to handle both intra-layer and inter-layer connections
- Able to handle arbitrary number of layers in an efficient manner.
- This methodology is generic and can be extended towards cabinet-level optimization.

Future Work:

- Update the algorithm for generic 3D layout cases and validate through measurements.
- Customized optimization algorithm to find a better tradeoff among multiple objectives.
- PowerSynth v2.0 release

Cabinet	2D/2								
Exp <mark>ort</mark> & Simulation	Solution Browser	Solution Database	Netlist Exporting	Simulation Interface	Expo Functio		Solution API		EMPro ANSYS
Optim <mark>iz</mark> ation Toolbox	Genetic Algorithms	ctrical Thermal Reliability			Pre/Post-Layout O Optimization		timization API		Matlab Scikit-Learn
Layout Evaluation	Electrical model			•	Partial Discharge model				Matlab ParaPower
Layout Synthesis	Constraii (DRC)	Constraint Connectivity (DRC) (LVS)			Layout Ge Generation				Gmesh Elmer
Data Input	Object-based layout representation		MFG Design Kit (MDK)		Embedded scripting environment		Material API		ANSYS
PowerSynth 2 Design Flow	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							F	^p owerSynth 2 Libraries

