DEVELOPMENT OF EDA TECHNIQUES FOR POWER MODULE EMI MODELING AND LAYOUT OPTIMIZATION

UNIVERSITY OF ARKANSAS

OUTLINE

- PowerSynth: an EDA tool for rapid power module layout optimization
 - Significance, applications, and challenges
 - Software overview
- Conducted EMI modeling in PowerSynth
 - High frequency equivalent circuits
 - Differential and common mode modeling
- Test Case and Comparison
 - DM and CM layout optimization
 - Comparison using simulated EMI testbench
- Conclusions

POWERSYNTH

MULTICHIP POWER MODULES (MCPM)

Applications	 Renewable energy Electric vehicles and traction Aerospace Industry
Advantages	 Integration of power and control circuitry Increased power density
Challenges	 Multidomain: electrical, thermal, mechanical Integration and EMC Design iteration

R&D 100 Award-Winning MCPM Design by UA and APEI

STATE OF THE ART AND CHALLENGES

Commercial Solutions

- Tools used to simulate electrical/thermal/mechanical/EMI
 - ICEPAK

SolidWorks

Q3D

MATLAB &

HFSS

- Simulink
- FastHenry
- Common Methodologies

COMSOL

- Finite Element Analysis (FEA)
- Circuit Simulation
- Advantages
 - Increased accuracy for finer meshes
 - CAD import, data and image export

Challenges

- Long simulation times
 - To solve closed form higher order differential equations
 - To build finer mesh
 - To analyze all parameters on finer mesh
- Single solution at a time
- User attention/input required (to modify/optimize geometry/mesh if one option doesn't work)

No full verification flow for power electronics exists

SOLUTION: POWERSYNTH

ARKANSAS

Multi-objective optimization tool for MCPM design

POWERSYNTH: OVERVIEW

Workflow Diagram

MIXED-SIGNAL COMPUTER AIDED DESIGN RESEARCH LAB

MCPM PHYSICAL DESCRIPTION AND **COMPONENT SELECTION**

OPTIMIZATION

- Four different optimization algorithms are available:
 - Non-guided randomization : Built-in solution generator
 - Evolutionary approach: NSGAII
 - Gradient-based approach: Weighted Sum Method
 - Stochastic approach: Simulated Annealing
- Performance metrics for optimization:
 - Electrical parasitics
 - Device temperature

Conducted EMI now a cost function

DC+ High Low M4 DC-

Power loop and heat sources

For more information on models:

T. M. Evans et al., "PowerSynth: A Power Module Layout Generation Tool," in IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5063-5078, June 2019. doi: 10.1109/TPEL.2018.2870346

MULTI-OBJECTIVE SOLUTION BROWSER

- View and sort through performance trade-off data
- Select solution which best suits design problem
- Supports 2D and 3D data visualization
- An envelope or window is used to sort through high dimensional data

Browser for selecting layout solutions from a Pareto front with the options to save and export

DESIGN EXPORT

- Export to SolidWorks or Q3D
 - Further electrical and thermal verification through Q3D and SolidWorks
 - Export for manufacturing from SolidWorks
 - Export to simulated EMI testbench
- Export electrical parasitics netlist for circuit simulation

MIXED-SIGNAL COMPUTER AIDED DESIGN RESEARCH LAB

CONDUCTED EMI MODELING

EMI IN POWER ELECTRONICS

- EMI can be radiated or conducted with several coupling paths
- Several standards exist for EMC based on application and region
- Conducted noise paths:
 - Common mode (CM) noise between power circuit and ground
 - Differential mode (DM) noise follows same path as power delivery
- Separating CM and DM
 - Accomplished with noise separator
 - Simplifies filter design
 - Aids in troubleshooting

HIGH FREQUENCY EQUIVALENT CIRCUITS

COMMON MODE MODELING

- L, R parasitics extracted using PowerSynth response surface model (RSM)
- Parasitic capacitances calculated based on trace area and separation from ground
- CM voltage gain transfer function employed in calculating CM noise

CONDUCTED EMITEST CASE AND SIMULATION

POWERSYNTH LAYOUT OPTIMIZATION

- Loop inductance (layout only) used as surrogate for DM noise
- CM noise calculated using modified nodal analysis (MNA) on HF equivalent circuit
 - Frequencies sampled geometrically between 10 kHz and 100 MHz
 - Average of CM voltage gain transfer function used in cost function
- 2201 layouts evaluated in 3675 s (228 shown)

Common Mode Transfer Function

SIMULATED EMITEST BENCH

- Automated export of PowerSynth design solutions to commercial FEA EM solver
- 3D EM simulation results exported as S-parameter model for circuit simulation
- Circuit simulation includes total system including detailed device models
- Transient simulations with FFT analysis of results possible

Circuit Setup Used:

- Half bridge power module, double pulse test
- Single SiC device / switch pos.
- 10 Å, 600 V DC Bus

UNIVERSITY OF

RKANSA

 \mathbf{Q}

• 25 kHz switching, 50% duty cycle

CM RESULTS COMPARISON

PowerSynth correctly identifies trend in CM noise genereation

MIXED-SIGNAL COMPUTER AIDED DESIGN RESEARCH LAB

DM RESULTS COMPARISON

DM results not as profound, but PowerSynth prediction still follows simulated trends

CONCLUSIONS

- EDA techniques for power electronic modules show promise for reducing design iterations
- Moving toward performance-based optimization instead of simply pure analytics (EMI reduction instead of blind parasitics reduction)
- Moving forward:
 - Optimize for signal integrity in gate loop toward preventing false turn on and improving current sharing
 - Explore layout impacts on radiated EMI
 - Test and validate with physical measurements

