DEVELOPMENT OF EDA TECHNIQUES FOR POWER MODULE EMI MODELING AND LAYOUT OPTIMIZATION

TRISTAN EVANS, QUANG LE, BALAJI NARAYANASAMY, YARUI PENG, FANG LUO, H. ALAN MANTOOTH
OUTLINE

- PowerSynth: an EDA tool for rapid power module layout optimization
 - Significance, applications, and challenges
 - Software overview
- Conducted EMI modeling in PowerSynth
 - High frequency equivalent circuits
 - Differential and common mode modeling
- Test Case and Comparison
 - DM and CM layout optimization
 - Comparison using simulated EMI testbench
- Conclusions
POWERSYNTH
MULTICHIP POWER MODULES (MCPM)

Applications
- Renewable energy
- Electric vehicles and traction
- Aerospace
- Industry

Advantages
- Integration of power and control circuitry
- Increased power density

Challenges
- Multidomain: electrical, thermal, mechanical
- Integration and EMC
- Design iteration

R&D 100 Award-Winning MCPM Design by UA and APEI
STATE OF THE ART AND CHALLENGES

Commercial Solutions

- Tools used to simulate electrical/thermal/mechanical/EMI
 - ICEPAK
 - Q3D
 - HFSS
 - COMSOL

- Finite Element Analysis (FEA)
- Circuit Simulation

- Common Methodologies
 - Finite Element Analysis (FEA)
 - Circuit Simulation

- Advantages
 - Increased accuracy for finer meshes
 - CAD import, data and image export

Challenges

- Long simulation times
 - To solve closed form higher order differential equations
 - To build finer mesh
 - To analyze all parameters on finer mesh

- Single solution at a time

- User attention/input required (to modify/optimize geometry/mesh if one option doesn’t work)

No full verification flow for power electronics exists
SOLUTION: POWERSYNTH

Multi-objective optimization tool for MCM design

- **Device & Layer Materials & Dimensions**
- **Symbolic Layout/Netlist**
- **Fixed constraints/Design rules**
- **Performance Criteria**

Flowchart:

1. **Model**
2. **Multi-Objective Optimization**
3. **Layout Solution Set**
4. **Export Solution**

- **Reduced order electrical and thermal models** ⇒ **Fast evaluation in optimization loop**
POWERSYNTH: OVERVIEW

Workflow Diagram

MCPM Physical Description and Component Selection
- Technology Library
- Symbolic Layout
- Select Baseplate and Substrate Materials and Dimensions
- Select Devices, Bondwire Types, and Leads

Optimizer Initialization and Execution
- Create a New Project, Import Files, and Specify Design Rules
- Assign Symmetries, Constraints, and Performance Metrics
- Characterize Electrical and Thermal Models
- Run Multi-Objective Optimization

Post-Optimization Analysis
- Browse Pareto-Optimal Results
- Select and Export Layout Solutions
- 3D Models
- Parasitic Netlist

Component Selection
Post-Optimization Analysis
MCPM PHYSICAL DESCRIPTION AND COMPONENT SELECTION

Physical Layout

Layer Stack and Materials

Symbolic Layout

MDK and Constraints

Component Selection

Layer Stack and Materials

- **Trace**
- **Substrate**
- **Metal**
- **Baseplate**

Legend

- Trace
- Wire
- Transistor
- Diode
- Power
- Terminal
- Signal Terminal

Physical Layout

MDK and Constraints

Component Selection

- **MOSFET**
- **SBD**
- **Terminals and Leads**
Four different optimization algorithms are available:

- Non-guided randomization: Built-in solution generator
- Evolutionary approach: NSGAII
- Gradient-based approach: Weighted Sum Method
- Stochastic approach: Simulated Annealing

Performance metrics for optimization:

- Electrical parasitics
- Device temperature

For more information on models:

MULTI-OBJECTIVE SOLUTION BROWSER

- View and sort through performance trade-off data
- Select solution which best suits design problem
- Supports 2D and 3D data visualization
- An envelope or window is used to sort through high dimensional data

Browser for selecting layout solutions from a Pareto front with the options to save and export
DESIGN EXPORT

- **Export to SolidWorks or Q3D**
- Further electrical and thermal verification through Q3D and SolidWorks
- Export for manufacturing from SolidWorks
- Export to simulated EMI testbench

- Export electrical parasitics netlist for circuit simulation
CONDUCTED EMI MODELING
EMI IN POWER ELECTRONICS

- EMI can be radiated or conducted with several coupling paths.
- Several standards exist for EMC based on application and region.
- **Conducted noise paths:**
 - Common mode (CM) noise between power circuit and ground.
 - Differential mode (DM) noise follows the same path as power delivery.
- Separating CM and DM:
 - Accomplished with noise separator.
 - Simplifies filter design.
 - Aids in troubleshooting.

How does power module layout affect conducted EMI?
Converter System Overview

DM Equivalent Circuit

\[V_{DM} = \frac{V_{LISN,1} - V_{LISN,2}}{2} \]

\[V_{CM} = \frac{V_{LISN,1} + V_{LISN,2}}{2} \]

CM Equivalent Circuit

FD Current Source (DM) and Voltage Source (CM) as Excitation

DM: TOTAL Loop Inductance & \(C_{\text{OSS}} \) Resonance

CM: Trace Capacitance to Ground

COMMON MODE MODELING

- L, R parasitics extracted using PowerSynth response surface model (RSM)
- Parasitic capacitances calculated based on trace area and separation from ground
- CM voltage gain transfer function employed in calculating CM noise

CM Equivalent Circuit

\[C_{Top} = \frac{\epsilon A}{d} \]

Module Trace Capacitance

Trace Capacitance:

\[C = \frac{\epsilon A}{d} \]

Common Mode Voltage:

\[V_{CM} = V_{DS} G_{CM} \]
CONDUCTED EMI TEST CASE AND SIMULATION
POWERSYNTH LAYOUT OPTIMIZATION

- Loop inductance (layout only) used as surrogate for DM noise
- CM noise calculated using modified nodal analysis (MNA) on HF equivalent circuit
 - Frequencies sampled geometrically between 10 kHz and 100 MHz
 - Average of CM voltage gain transfer function used in cost function
- 2201 layouts evaluated in 3675 s (228 shown)
SIMULATED EMI TEST BENCH

- Automated export of PowerSynth design solutions to commercial FEA EM solver
- 3D EM simulation results exported as S-parameter model for circuit simulation
- Circuit simulation includes total system including detailed device models
- Transient simulations with FFT analysis of results possible

Circuit Setup Used:
- Half bridge power module, double pulse test
- Single SiC device / switch pos.
- 10 A, 600 V DC Bus
- 25 kHz switching, 50% duty cycle
PowerSynth correctly identifies trend in CM noise generation.
DM results not as profound, but PowerSynth prediction still follows simulated trends.
CONCLUSIONS

- EDA techniques for power electronic modules show promise for reducing design iterations
- Moving toward performance-based optimization instead of simply pure analytics (EMI reduction instead of blind parasitics reduction)
- Moving forward:
 - Optimize for signal integrity in gate loop toward preventing false turn on and improving current sharing
 - Explore layout impacts on radiated EMI
 - Test and validate with physical measurements