

Constraint-Aware Algorithms for Heterogeneous Power Module Layout Synthesis and Reliability Optimization

Imam Al Razi, Quang Le, Prof. Alan Mantooth and Prof. Yarui Peng

University of Arkansas

RKANSA

https://e3da.csce.uark.edu

🖀 +1 (479) 575-6043

⊠ yrpeng@uark.edu

Introduction to PowerSynth

First Multi-Chip Power Module (MCPM) layout synthesis tool that exploits multi-objective optimization to generate optimum layout solutions

Motivation and Approach

□ Motivation:

- PowerSynth current layout engine can optimize 2D power module layouts with limited geometric configurations.
- DRC unawareness in generation phase: not suitable for heterogeneous and 3D power module.

Objective:

- To create a constraint-aware layout engine, capable of:
 - Considering both design and reliability constraints
 - Considering heterogeneous components (EMI filter, gate driver, sensors)
 - Implementing generic and scalable algorithms for optimization
 - Processing broader range of layouts with higher complexity

Methodologies: Corner Stitch, Constraint Graph, Optimization Algorithms

Corner Stitch

FAST

NORTH

WEST-

SOUTH

Layout area is tiled with non-overlapping rectangles:

Empty tiles and different types of solid tiles

Each tile contains four pointers:

Two at its top right corner, two at lower left

Rules for horizontal (vertical) corner stitch:

- Rule #1: First, each tile must be as wide (tall) as possible.
- Rule #2: Then, each tile must be as tall (wide) as possible.

Constraint Graph

Relationship between nodes with edges having minimum constraint value. W B Α $B \ge A + W$

Two Types of Constraint Graphs:

Horizontal/Vertical Constraint Graph (HCG/VCG)

Constraint-Aware Algorithms for Heterogeneous Power Module Layout Synthesis and Reliability Optimization

Methodology

• Overall flow of methodology:

- User-defined initial layout
- Create initial data structure
- Create constraint graphs for DRC aware layout
- Generate candidate layouts
- Use electrical/thermal cost functions for optimization
- Generate Pareto surface and select best layouts

Incorporated Constraints

Design Constraints:

• To generate DRC-clean fabrication-feasible layouts:

- Minimum width along x and y direction
- Minimum spacing between two components
- Minimum enclosure of one component to another
- Minimum extension along horizontal and vertical

Reliability Constraints:

• To minimize thermal and electrical (i.e. partial discharge) concerns:

- Current-dependent minimum width
- Voltage-dependent minimum spacing

Horizontal Constraint Graph (HCG)

□ An illustration of creating horizontal constraint graph:

Vertical Constraint Graph (VCG)

12/4/2020 Constraint-Aware Algorithms for Heterogeneous Power Module Layout Synthesis and Reliability Optimization

Reliability Constraints

□ I-V value assigned:

Here, all width (W1') and spacing (S') edge weights are modified to consider reliability constraints, because of high voltage-and-current loading.

Optimization Algorithms

Our optimization algorithms have four operating modes-

Mode	Purpose	Evaluation Methodology		
0	Minimum sized layout	Minimum constraint values		
1	Variable floorplan sized layouts	All weights are randomized with minimum constraints No maximum constraint		
2	Fixed floorplan sized layouts	All weights are randomized		
3	Fixed floorplan with fixed component location layouts	with minimum constraints Some have maximum constraints		

Optimization Algorithms

12

Terminology:

- Source Node: No incoming edge but outgoing edges. Source nodes will always have a fixed location.
- Sink Node: No outgoing edge but incoming edges. Sink nodes may have fixed locations.
- Fixed Node: Has the same max and min location. Can be treated as a source or sink node.
- Non-Fixed Node: Location is not fixed yet. Need to be evaluated

Min location is determined using longest path algorithm

HCG (VCG)	x2 10 x1 5	Node	Parent	Incremental Value	Min Location
	5 10 10 5	X0 Source	-	-	0
Longest path	X3 X	X1	X0	0+5	5
aigontinn	10	X2	X1	5+10	15
\mathbf{I}	HCG X5	Х3	X1 X2	5+10 15+5	20
Evaluated HCG (VCG)			XU	0+5	
	Min constraint values: $E_{-5} \times -10$	X4	X1 X3	5+10 20+10	30
	S=5 W1=10	X5	X4	30+5	35
winimum sized layout					

Minimum Sized Layout

Constraint Values:

V Diff. (V) Spa		cing n)
100	1	
200	2	
300	3	
400	4	
Trace I (A)	Width (mm)	
200	3	
1	2	
Design Const	Value	
Trace Min w	2 mm	
Trace to Trace	2 mm	
Ledge wid	2 mm	
Die to trace enc	1 mm	

Minimum-sized layout with (a) design constraints only, (b) both design and reliability constraints

For Mode-1 optimization the following algorithmic flow is implemented:

- In constraint graph, each weight is varied within certain limit:
- (minimum constraint value, random maximum value)
- HCG evaluation gives x locations.
- VCG evaluation gives y locations.
- Whole process is iterated over N times.

Edge Splitting: An edge can be split into two parts, if:

- The edge has source or destination at a fixed node.
- The edge bypasses any fixed node.

Edge Removal: An edge can be removed, if:

• The edge has both source and destination at fixed nodes.

Fixed Floorplan (Mode 2&3)

A graph can be split into Sub Connected Graphs:

• There is no dependency (connected edge) between each part

□ Mode-2 and 3 optimization algorithmic flow:

Input: Constraint Graph (G) Output: Node locations Function (G):

Split Edge (start, mid, end) If fixed edge is found: Remove edge Split into connected graphs For each subgraph: Evaluate graph If all node locations are fixed: return Else:

Function (G)

Experimental Results (Mode-1,2,3)

Efficiency Comparison

Case #	Valid # out of 3015 layouts		Time for each valid layout (s)	
	Current	Proposed	Current	Proposed
1	76	3015	0.0098	0.0012
2	1883	3015	0.0006	0.0023
3	0	3015	N/A	0.0113

□ Current layout engine cons: 1. Only fixed floorplan sized layouts 2. Not scalable 3. Limited layout representation capability.

Case 3

□ In each case, 1000 candidate solutions with varying floorplan sizes (2475 mm² to 9000 mm²) are generated for optimization.

Electrical and thermal models are used for evaluation.

Conclusions and Future Work

Conclusions:

- We have proved corner stitch and constraint graph methodology can be used in power module layout optimization.
- We have implemented both DRC and reliability constraint-aware layout generation in flat-level floorplan
- Flat level layout representation has coordinate-correlation issues that restricts the variation and flexibility.
- Hierarchical approach is potential solution.

Future Work:

- Layout optimization using hierarchical approach
- 3D layout synthesis and optimization

To have more feasible layouts with larger variation due to less coordinate correlation among components.

To reduce complexity in both modular and system level optimization using reusability feature

A generic algorithm which can be extended to process 2.5D and 3D layouts. Minimum-sized layout

□ Initial result:

