

Georgia Institute of Technology

Die-to-Package Coupling Extraction for Fan-Out Wafer-Level-Packaging

Yarui Peng¹, Dusan Petranovic², and Sung Kyu Lim³

¹University of Arkansas, Fayetteville, AR ²Mentor Graphics, Fremont, CA ³Georgia Institute of Technology, Atlanta, GA

🖀 +1 (479) 575-6043

Introduction

□ Fan-out wafer-level-packaging (FOWLP)

- Low-cost multi-die solution with excellent thermal and RF properties
- Allows multiple chip to be tightly integrated with package
- New parasitics are introduced in the interface layers

Public domain

12/16/2017

FOWLP Fabrication

TV1: Mold-first for Fine RDL

Chip placement on molding tape on mold frame

TV2: RDL-first for Fine RDL

Public domain

FOWLP Scales

Package chip dimension will keep scaling into 1um range using foundry BEOL process

Package layers becomes similar to chip top metal layers

FOWLP is Here!

□ Apple A10, A11 processor in iPhones all used FOWLP

High performance, low cost, high IO density, very thin package

12/16/2017

Motivation

Pkg-to-die (P2D) coupling noises threaten signal integrity:

• Significantly higher noise when both L and M elements are considered

No parasitic extraction tool exists for P2D extraction

Our FOWLP Process Design Kit

□ We designed a FOWLP PDK:

- Chip: 45nm technology with seven metal layers
- Package: 10/10/10µm W/S/T with 45° routing

□ FFTx1 circuit contains 1.15 million cells in a 4mm square package

12/16/2017

Our Benchmark 2D/2.5D Designs

Multi-chip 2.5D FFT256 Designs

Duplicated the base design to implement FFTx2 and FFTx4 2.5D designs

FFTx4 (only signals)

Our Benchmark 2D/2.5D Designs

Chip and package wires have significantly different dimensions

- Difficult for general chip extraction tools to perform extraction efficiently
- Irregular package routing increases extraction complexity

E-Field Shielding Impact

D2P coupling significantly increases with a closer D2P distance

Top Layer	CCap (fF)	D2P distance (µm)						
		2	5	8	10			
M7	M7-R1	15.06	7.155	4.746	3.880			
	M6-R1	0.005	0.002	0.002	0.002			
M6	M6-R1	4.330	3.319	2.691	2.388			

E-field Shielding from RDL also affects D2P coupling

Using one RDL layer is good enough because of ground planes

Total RDL#	1 RDL	2 RDL	3 RDL
M7-R1	7.155	6.960	6.953
M7-R2	-	0.201	0.195
M7-R3	-	-	0.005

What if we model the chip as a ground plane?

- Compatible with most package tools (Allegro, Xpedition)
- With only ground plane, D2P coupling is significantly overestimated
- Also, only lumped capacitance can be extracted

	CCap	Mtop	Via	rdl1	rdl2	rdl3
GND plane	Mtop	0	0	4.669	0.011	0.000
	RDL1	4.669	0	0.782	41.44	0.145
Real die	Mtop	60.92	2.793	1.019	0.075	0.055
	RDL1	1.019	0.006	0.710	42.65	0.056

Ccap(pF)	Mtop-Mtop	Mtop-Via	Mtop-R1	R1-R1
Real die	60.92	2.793	1.019	0.71
Ground plane	0	0	4.669	0.782
Err%	-100%	-100%	358%	10.2%

- Traditionally, chip and package routings are extracted separately
 - D2P coupling is ignored completely
- Holistic extraction takes all metal layers from both chip and package into consideration
 - First, create a new metal stack configuration that includes all seven chip layers and three package layers.
 - Then, design a holistic die-package layout by merging the geometries from the die and the package.
 - Finally, run Calibre xACT on the holistic design to obtain all capacitance information

Holistic Extraction Results

D2P coupling capacitance extraction using holistic extraction

• Our GDS-level CAD tools can be used for complete D2P RCLM extraction

Layer	M1	M2	M3	M4	M5	M6	M7	rdl1	rdl2	rdl3
Gcap	45856	24607	10502	6891.8	8429	2486.6	2316.7	17389	898.31	2833.8
Ccap	M1	M2	M3	M4	M5	M6	Μ7	rdl1	rdl2	rdl3
M1	19093	21827	10267	1785	60	2.22	0.02	0.07	0	0
M2	21827	27895	53198	17424	377	20.68	0.24	3.85	8.55	5.23
M3	10267	53198	28434	88343	5005	185	0.87	3.31	4.4	3.23
M4	1785	17424	88343	33021	56288	5337	359	12.13	8.23	4.57
M5	60.23	377	5005	56288	18016	51222	375	31.08	12.46	6.96
M6	2.22	20.68	185	5337	51222	18708	16623	354	410	2.71
M7	0.02	0.24	0.87	359	375	16623	257	2519	47.05	0.23
rdl1	0.07	3.85	3.31	12.13	31.08	354	2519	134	31207	11.57
rdl2	0	8.55	4.4	8.23	12.46	410	47.05	31207	461	46256
rdl3	0	5.23	3.23	4.57	6.96	2.71	0.23	11.57	46256	231
Ccap	53034	120759	185443	202582	131393	92865	20182	34277	78415	46522

Cap unit in fF

ARKANSA

12/16/2017

Coupling Cap Distribution

Holistic extraction clearly captures all D2P coupling components

With larger D2P overlapping area, D2P coupling increases significantly

Problem?

Holistic extraction is highly accurate but computationally expensive

- it contains all layers from both the die and the package
- complicated structures on the package layers: hatch ground planes, pads, vias, 45° routing, circular shape routing
- requires in a significant increase in both runtime and memory

For example

- two 10nm chip with 12 metal layers
- a three-layer package (20mm-by-20mm)
- 32-node (4 cores/node) computing grid
- more than 700GB of DRAM space
- more than three days

In-Context Extraction

In-Context Extraction reduces both computational time and memory

- In-Context extraction takes each chip separately
- with a few interface layers from the neighboring component

With the same example,

- less than 150GB memory
- less than 1.5 days

Reuse most of the existing 2D LVS rule decks

- Only some minor extensions are necessary for interface layers
- Eliminates the need for sharing intellectual properties across different design houses
- Greatly simplifies the extraction procedure with heterogeneous designs

In-Context Design

Using one RDL layer and cut each chip with D2P overlapping region
Preserves all D2P coupling and the compatibility with chip tools

die1

die0

Die-to-Package Coupling Extraction for Fan-Out Wafer-Level-Packaging

ARKA

In-Context Extraction Results

In-context extraction still captures all D2P coupling elements and is highly accurate compared with holistic extraction

R1 coupling is smaller because of Fan Out region is not included

Method	Die0 +	Die1 In-0	Context	Die0&Die1 Holistic			
Layer	M7	Via	R1	M7	Via	R1	
GCap	29.87	3.529	5.726	29.78	3.454	28.124	
CCap	M7	Via	R1	M7	Via	R1	
M7	121.8	6.061	2.202	121.9	5.612	2.187	
Via	6.061	0.000	0.000	5.612	0.000	0.000	
R1	2.202	0.000	1.281	2.187	0.000	2.143	

What about Inductance?

Halo-Ground Approximation

(b) Halo ground layout

(a) Original layout

Yarui Peng, Dusan Petranovic and Sung Kyu Lim, "Chip/Package Co-Analysis and Inductance Extraction for Fan-Out Wafer-Level-Packaging", EPEPS, 2017

Die-to-Package Coupling Extraction for Fan-Out Wafer-Level-Packaging

UNIVERSIT

Package-to-Chip RLM Estimation

Less than 3s to compute more than 1000 package and chip wires Accuracy verified against Fast Henry.

Fast Henry						Our n	nethod		
#	R	TotL	TotM	R	ERR%	TotL	ERR%	TotM	ERR%
1	0.52	34.3	94.8	0.52	-0.7%	35.3	2.8%	89.8	-5.3%
2	0.52	34.5	109.2	0.52	-0.6%	35.5	2.9%	104.6	-4.3%
3	0.42	27.5	106.3	0.41	-1.3%	26.8	-2.6%	96.4	-9.4%
4	0.52	34.8	121.1	0.51	-0.6%	35.8	3.0%	116.5	-3.8%
5	0.52	34.8	120.9	0.51	-0.6%	35.9	3.0%	116.3	-3.8%
								Ă	RKANSA

Package-to-Chip Noise Estimation

Our tool identifies any noise hot-spot on chip and provides fast estimation of package-induced signal integrity issues

12/16/2017

Noise Analysis

P2D inductive coupling noises are dominating RCLM netlist is required for accurate noise estimation

- D2P coupling is heavily affected by E-field Shielding. Using ground plane approximation is not accurate enough for FOWLP
- We propose holistic extraction with all metal layers and full geometries and demonstrate its maximum accuracy with high runtime and memory cost.
- We propose in-context extraction flows for reduced computational expenses and simplified flows for heterogeneous designs. In-context extraction is still highly accurate to capture D2P coupling.
- A comprehensive coupling extraction with RCLM netlist is needed for chip-package co-design, co-analysis, and co-optimization.

23