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Background and Purpose
■ Recent advances in wide band gap devices allow high voltage, high 

frequency power module applications ranging from 100 kHz – MHz 

■ To achieve the best WBG devices performance, attention needs to be paid 
to electronic packaging and integration 

■ Interconnect parasitic inductance is one of the main challenges since it 
results in:

– High voltage overshoot (L
𝑑𝑖

𝑑𝑡
) [1]

– Increased device switching losses [2]

– Imbalanced current sharing between devices [3]

– Electromagnetic interference and compatibility issues [4]

→ Minimization of interconnect parasitics during design will mitigate some of 
the problems above
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Background and Purpose

FastHenry [2]ANSYS-Q3D [1]

• State of the art methods:

• Finite element method (FEM)

• Partial Element Equivalent Circuit (PEEC)

• While ensuring high fidelity, these numerical methods are usually 

computationally expensive 

→ Reduce designer flexibility, hard to search for an optimized design 

MCPM Layout 
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■ Developed in the MSCAD group at the University of Arkansas, 
it is the first design tool that can quickly synthesize and 
optimize MCPMs layouts 

■ Analytical formulas along with reduced order models are used 
to quickly assess thermal and electrical performance

→ Multiple layout solutions are generated in a few minutes to an 
hour 

PowerSynth -
an MCPM Design Tool
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MOTIVATION
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PowerSynth Electrical Model

Connection Nodes

Rectangular Splits

Current Path

→Convert a layout to a graph based problem, where each 

edge of the graph stores parasitic information (lumped 

equivalent network)

→Analytical formulas (microstrips) are used to approximate 

the parasitic result

→Laplacian Matrix can then be used to solve for the effective 

impedance
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Graph Representation

Microstrip vs MCPM Structure



PowerSynth Electrical Model

• Mathematical equations are fast → good for parasitic optimization cost 
function

• Much faster than numerical methods (PEEC, FEM)

• Lumped electrical networks allow fast and easy parasitics analysis 
between any two nodes 

Advantages:

• Equations are designed for a fixed frequency range and aspect ratio →
Accuracy is traded off for faster analysis 

• Assumption of an unitary current through the layout

• Inductance equations are not frequency dependent

Limitations:
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Motivation – Response Surface Modeling
– Replacing analytical model for higher prediction accuracy of trace self-inductance and 

resistance

– Improved accuracy with faster prediction time

– Adaptive method for parasitic prediction of both simple and complex layout geometry (in 
the future)

– Capture the frequency dependent effect accurately
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Response Surface Model Formation Steps

Geometrical design 
parameters, material info, 

and frequency range
Simulation Batches

Response Surface 
Formulation
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Model Formulation 
■ Skin depth equation is used to compute the skin-depth of the highest frequency input 

δ =
2

ωμσ

■ The skin-depth value is used to create the mesh in FastHenry

■ Design parameters are set based on the DBC sizes and design rules given by user

Parameter Range (mm)

W Design rule minimum to max (A, B)/2

L max (A, B)/4 to max (A, B)
13

Mesh Setup in FastHenry



■ Simulation batches in FastHenry are run for each different design parameter 
configuration

■ Kriging method is used to find the relationship between design parameters and 
parasitic results

Inductance Response Surface Resistance Response Surface
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90-Degree Corner Correction Model

■ A common practice is using lumped 
element circuits to simply add the 
inductance values of perpendicular 
traces

■ Due to the current crowding effect, 
current usually concentrates at the 
inner corner

→ The current loop is therefore smaller

→ Overestimation in inductance 
calculation 

Current Crowding Effect
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90-Degree Corner Correction Model

(a) 90-degree corner approximation in PowerSynth, 

(b) 90-degree corner simulation in FastHenry 

■ A simulation is run in FastHenry (right) 
the result is subtracted from the 
addition of 2 rectangular pieces 

■ The inner Length of the corner is fixed 
while the Widths (W1 , W2) are varied

■ A response surface is built to map W1 
and W2 with the result of the 
overestimation

■ This can be used to quickly evaluate 
the overestimation result later 
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VALIDATION
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• A simple 2-position half bridge layout is created in PowerSynth. The parasitic result is 

measured from DC+ to DC- terminals 

• Response surface models are used to replace analytical formulas in PowerSynth

• The layout is extracted to FastHenry for response surface parasitic extraction from 

10kHz to 1MHz

Validation to FastHenry
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Half-bridge layout in PowerSynth

Exported layout to FastHenry



Validation to FastHenry
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• Simulation results show less than 8 % error for both inductance and resistance extractions

FastHenry Response Surface Speed up

Extraction Time ~300 s ~50 ms x6000

Simulation time comparison
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Measurement Setup
• The test vehicle is built upon an aluminum nitride DBC substrate 

• Measurements are performed using an LCR meter from 10kHz to 1MHz

• Time Domain Reflectometry (TDR) is also performed to validate the inductance result at high frequency

Fabricated Test Vehicle 

LCR Measurement Setup
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Coax Cable Connection for TDR



Validation to Measurement

• Another FastHenry simulation is made to take into account the connection wires at DC+ and DC-

terminals

• The connection wires inductance and resistance contributions are then added to the results from 

PowerSynth
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Fabricated Test vehicle FastHenry with Connection Wires



Validation to Measurement (LCR)

10k 100k 1M
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• A maximum error of 7.5% was found for resistance and 10% was found for inductance
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Validation to Measurement (TDR)

• Measurement result from TDR shows 24.86 nH. This is very close to the PowerSynth extracted result at 

1MHZ (26.1 nH)

PowerSynth

Ind (1MHz)

Measurement 

(TDR)

Measurement 

(LCR @ 1MHz)

26.1 nH 24.86 nH 25.58 nH
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• This has shown only 4.98% and 2.03% error against TDR and LCR measurements, respectively



Validation to Measurement (TDR)

• In addition, the capacitance measurement is also performed to validate the capacitance extraction 

from PowerSynth

PowerSynth 

Cap

Measurement 

(LCR)

Measurement 

(TDR)

169.5 pF 160.8 pF 170.95 pF

• This has shown only 5.41% and 0.85% error against LCR and TDR measurements, respectively
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OPTIMIZATION
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Pareto Front Representation in PowerSynth

Optimized Layout RLC Extraction Results at 100 kHz

R (mOhm) L (nH) C (pF)

Example 
Layout

4.83 23.49 169.5

Optimized RL 3.06 10.69 185.79

Improvement 
(%)

36.6 54.5 -9

■ To compensate for 
the 9% increase in 
C, the best layout 
has shown parasitic 
L and R reductions 
of 54.5% and 
36.6%, respectively
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Layout Optimization 
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Conclusion
■ Response surface models ensure high prediction accuracy while thousands times 

faster than numerical methods

■ Optimization using response surface effectively improve design performance

■ Frequency dependent effects can be captured accurately

■ Response surface for corner correction captures the non-uniform current 
distribution

Future Work
■ More complicated layout structures will be analyzed and validated
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Collaboration
▪ Micro-channels heatsink modeling (Howard University) 

▪ New optimization methodologies (UIUC)
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