

Thermal Impact Study of Block Folding and Face-to-Face Bonding in 3D IC

Yarui Peng¹, Moongon Jung², <u>Taigon Song</u>¹, Yang Wan³, and Sung Kyu Lim¹ ¹School of ECE, Georgia Institute of Technology, Atlanta, GA, U.S.A. ²Intel Corp., Santa Clara, CA, USA. ³Google Inc., Mountainview, CA, USA.

Contents

- Motivation
- Thermal impact of block-folding
- Thermal impact of F2F bonding
- Summary

Motivation

- Existing 3D IC design studies
 - Block folding [M. Jung et al., CICC13']
 - F2F-bonding-based design [D. Kim et al., TC'14] [M. Jung et al., DAC14']
- Little in-depth study on thermal impact
 - Most previous works focused on wire length reduction, power reduction, and performance improvement
 - Full-chip thermal impacts were not studied in detail
- What are the thermal impacts in 3D IC design?
 - Block folding and F2F bonding

Benchmark Design

- OpenSPARC T2
 - Commercialized in 2007
 - UltraSPARC T2
 - Manufactured in 65nm @ 1.4GHz
 - RTL in public: 8 cores, 64-threads
 - Big (& meaningful) core: 500M TR
 - Digital & memory designed (~90%)
 - I/O and analog removed

Comparison with Commercial T2

	UltraSPARC T2	GT OpenSPARC T2
Technology	65nm	28nm
Area (mm ²)	342 (20 x 17mm)	72 (9 x 8mm)
Complexity	503M Transistors	7.5M Logic Std. Cells + 5548 Mem. Macros
Power	95 W (123W max)	8.96 W
Max. clock freq.	1.4GHz	0.5MHz

17mm

T2 Core Layouts: 2D vs. 3D

- We designed our T2 core in two ways:
 - Non-folding and block-folding

What is Block-Folding?

- Block-folding: Designing a single module (block) in two dies
 - Power reduction INSIDE modules

T2 Full-chip Layouts: 2D vs. 3D

MAC

(c) 3D w/ folded blocks (#F2F: 101,555)

RDP

RTX bot

RTX top

8/28

Block-Folding: Impact in Full-chip Design

T2	2D	3D w/o folding	diff	3D w/ folding	diff
Footprint (mm ²)	71.1	38.4	-46.0%	40.8	-42.6%
WL (m)	339.7	320.3	-5.7%	306.9	-9.7%
# Cells	7.41M	7.02M	-5.3%	6.72M	-9.3%
# Buffers	2.89M	2.37M	-18.0%	1.97M	-31.8%
# HVT cells	6.40M (86.3%)	6.38M (90.0%)		6.58M (95.1%)	
# TSV	-	3,263		69,091	
WNS (ns) @2ns clk	-0.050	-0.040		+0.022	
gcc power (W)	20.5	17.4	-15.1%	16.2	-21.0%
spice power (W)	21.3	18.1	-15.0%	16.8	-21.1%

Significant power saving in 3D with block-folding

3D uses more HVT cells than 2D, thanks to better timing

• Dual-Vt design: RVT (regular Vt) & HVT (high Vt)

Thermal Impacts of Block-Folding

F2B Thermal Analysis Structure

Metal dimensions are based on a 28nm technology

Our GDSII-Level Simulation Flow

• Our simulation flow combines both commercial tools and in-house design tools to provide maximum accuracy.

12/28

3D Thermal Challenges

 3D design introduces significant thermal challenges due to <u>increased power density</u> on a <u>smaller footprint</u>

Hot Spot Redistribution Helps Thermal

- Distributing hot spots help reducing maximum temperature
 - Spreading hot spots reduces thermal accumulation
 - High power density modules on the top die reduces vertical heat flow

Thermal Perspectives in Block-Folding

- Two aspects of block-folding:
 - Folded-blocks increase power density
 - Folded-blocks move half of power onto the top die

TSV Locations in 3D Designs

(a) TSV locations (3D w/o Folding, die bot) #TSV: 3,263 (b) TSV locations (3D w/ Folding, die bot) #TSV: 69,091

Block Folding: Bonding Layer

• With block folding, TSV count increases significantly. This helps the vertical heat flow and reduces the maximum temperature on the bottom die

	TSV count	Non folded (TSV)	Folded (TSV)
	Core	2,979	9,551
	Full chip	3,265	69,151
Die_bot full-chip	Core		ore .
	Core		ore -
			5 C
	F2B Non-fo	olded F2B	Folded

Block-Folding: Overall Impact

- Block-folding does not worsen thermal results
 - Power decreases with FUB folding
 - More TSVs help vertical heat dissipation
 - More blocks are moved onto the top die
 - But, unavoidable hotspot overlapping occurs
 - (folded EXU, highest power density)

Block-Folding: Summary

• Block-folding does not worsen thermal results

Decian	Benchmark	Folded?	Temperature (°C)		
Design			Bottom die	Top die	
Core	gcc	No	74.0~ <mark>87.0</mark>	75.9~ <mark>78.5</mark>	
		Yes	70.6~ <mark>88.6</mark>	70.1~ <mark>82.9</mark>	
	spice	No	78.7~ <mark>92.6</mark>	76.6~ <mark>85.2</mark>	
		Yes	79.1~ <mark>91.7</mark>	77.8~ <mark>86.6</mark>	
Full-chip	gcc	No	53.6~ <mark>61.7</mark>	52.9~ <mark>57.6</mark>	
		Yes	51.1~ <mark>59.2</mark>	50.6~ <mark>57.3</mark>	
	spice	No	54.6~ <mark>63.2</mark>	53.9~ <mark>58.5</mark>	
		Yes	52.1~ <mark>60.7</mark>	51.6~ <mark>58.6</mark>	

Thermal Impact of F2F (Face-to-Face) Bonding

Thermal Analysis Structure: F2B vs. F2F

• Our simulation covers both F2B and F2F bonding structures.

Boundary Condition: Static Air - 25W/(m²K)

smaller per-via impact than TSV

TSV is large (3um) \rightarrow helps vertical heat flow

F2F Bonding: Design Comparisons

T2	2D	3D (F2B)	diff	3D (F2F)	diff
Footprint (mm ²)	71.1	40.8	-42.6%	40.8	-42.6%
WL (m)	339.7	306.9	-9.7%	302.7	-10.9%
# Cells	7.41M	6.72M	-9.3%	6.59M	-11.1%
# Buffers	2.89M	1.97M	-31.8%	1.85M	-36.0%
# TSV/F2F	-	69,091		101,555	
gcc power (W)	20.5	16.2	-21.0%	15.9	-22.4%

-21.1%

16.6

F2F saves more power than F2B

21.3

spice power (W)

F2F vias are much smaller and do not occupy silicon area —

16.8

Block quality is better in spite of inter-block routing issue —

-22.1%

F2F Helps Thermal in Full Chip

- F2F bonding shows the lowest max temperature
 - Reduced power consumption
 - Increased background thermal conductivity

Bonding Layer Comparison (6 FUBs Folded)

 TSVs (3um) help thermal more compared with F2F vias (0.5um) in similar via count

24/28

0

- But, background thermal conductivity is different
 - TSV structure (0.29W/m/K) vs. F2F structure (1.38W/m/k)

Thermal conductivity maps of bonding layer

F2F Via Impact

- Unlike TSVs, additional F2F vias show much smaller impact than TSVs and µbumps
 - F2F vias are much smaller than TSVs
 - F2F bonding layer is not a limiting factor for vertical heat flow

F2F Bonding: Thermal Maps

- Though F2F bonding helps reducing overall power consumption, its impact on thermal is small
 - The F2F bonding layer has a much better background thermal conductivity
 - But small-sized F2F via reduces the thermal benefits (Compared to TSVs)

F2F Bonding: Summary

• Despite its power benefits, F2F does not help thermal significantly

Decian	Benchmark	Bonding	Temperature (°C)		
Design			Bottom die	Top die	
Core	gcc	F2B	70.6~ <mark>88.6</mark>	70.1~ <mark>82.9</mark>	
		F2F	72.5~ <mark>88.1</mark>	71.7~ <mark>83.1</mark>	
	spice	F2B	79.1~ <mark>91.7</mark>	77.8~ <mark>86.6</mark>	
		F2F	80.9~ <mark>91.5</mark>	79.3~ <mark>86.9</mark>	
Full-chip	gcc	F2B	51.1~ <mark>59.2</mark>	50.6~ <mark>57.3</mark>	
		F2F	50.8~ <mark>57.2</mark>	50.6~ <mark>56.5</mark>	
	spice	F2B	52.1~ <mark>60.7</mark>	51.6~ <mark>58.6</mark>	
		F2F	51.8~ <mark>58.6</mark>	51.6~ <mark>57.8</mark>	

- Separating hot spots and moving high power blocks closer to the heat sink helps
- BCB bonding layer blocks vertical heat flow in F2B
 - Additional TSVs and µbumps help
- Block folding does not worsen thermal
 - Low power design + TSVs as heat conductors
- F2F bonding does not improve temperature too much
 - Small F2F via sizes

Thank You

• yarui.peng@gatech.edu