Full-chip Inter-die Parasitic Extraction in Face-to-Face-Bonded 3D ICs

Yarui Peng1, Taigon Song1, Dusan Petranovic2, and Sung Kyu Lim1
Georgia Institute of Technology, Atlanta, GA, USA
1School of ECE, Georgia Institute of Technology, Atlanta, GA, USA
2Mentor Graphics, Fremont, CA, USA
Face-to-face Bonding Structure

- Inter-die capacitance becomes important when die-to-die distance is small, especially for face-to-face (F2F) bonded structures with direct copper bonding.

F2F-bonded 3D IC structure with interconnect parasitics
To analyze the trend in F2F structure, we build a test structure in Raphael with repeated pattern

- Wire dimensions are based on M4 dimensions in a 45nm technology
- Intra-die coupling: AB cap and CD cap
- Inter-die overlap coupling: AC cap and BD cap
- Inter-die fringe coupling: AD cap and BC cap
Die-to-die Distance Impact

- With a closer die-to-die distance:
 - Intra-die cap (AB Cap) decreases due to stronger E-field sharing
 - Inter-die cap increases significantly
 - Inter-die overlap cap (AC cap) increases much more than inter-die fringe cap (AD cap)
With a larger wire-to-wire distance

- Both intra-die coupling (AB cap) and total cap reduces
- Inter-die first increases with larger overlap cap (AC cap) due to weaker E-field sharing then slightly decrease due to smaller fridge cap (AD cap)
Three Ways of Full-chip F2F Extraction

- **Die-by-die extraction**
 - Extract dies separately

- **Holistic extraction**
 - Extract all layers simultaneously

- **In-context extraction**
 - Extract each die separately but aware of a few neighboring die layers
Die-by-die extraction is the straight-forward flow currently enabled by many CAD tools:

- Assumes each die can be extracted separately
- Ignores all parasitic between dies
- Accurate when dies are separated far or have a ground layer in between
- Holistic extraction takes all layers into consideration and it introduces more CAD and LVS complexity

Technology generation:
- 2D technology
- 3D F2F technology generator
- 3D technology
- Characterization
- 3D extraction rule
- 3D extraction
- 3D Holistic parasitics

Design generation:
- 2D Bot die
- 3D design convertor
- 3D Bot die
- Top-design generator
- 3D Top die
- 3D top-level design
- Assemble design
- 3D holistic design

Holistic extraction flow
Die-by-die vs. Holistic Extraction

- **Die-by-die uses the same metal stack as 2D technology**
 - Enables reuse of existing DRC, LVS and PEX rule decks
- **Holistic extraction needs to rebuild rule decks**
 - All original and derived layers and device renamed and remapped
 - Need technology recalibration

![Layer Structure Diagram]

- **Same as 2D Technology**
 - M1
 - M2
 - M3
 - M4

- **Die-by-die layer structure**

- **Holistic layer structure**
 - M1B
 - M2B
 - M3B
 - M4B
 - M1T
 - M2T
 - M3T
 - M4T
Holistic Design Example

- By assembling of individual dies, we are able to create a holistic design which contains all metal layers
In-context extraction takes in a few metal layers from the neighboring die as interface layers

- Keeps most of inter-die coupling and remains accurate
- Reduces CAD complexity and compatible with current tool flow

In-context Extraction Flow

Technology generation
- 2D technology
- 2D library
- In-context technology generator
- Characterization
- In-context extraction rule
- Bot-die extraction
- Double-counting and surface layer handling
- Bot in-context parasitics

Design generation
- 2D Bot die
- 2D Top die
- In-context design generator
- Bot in-context die
- Top in-context die
- Top-die extraction
- Bot in-context parasitics
• **In-context technology can be calibrated incrementally**
 – Base layer calibration results can be derived from existing rule decks
 – The surface layer in the in-context extraction is defined as the layer furthest from the substrate

In-context layer structure
(with one interface layer from each die)
In-context design only needs additional routing information from the neighbor die

- Enables much simpler rule deck generation
• With in-context extraction, capacitance on interface layers are double-counted
 – A simple solution is to halve all caps from interface layers in SPEF files
• Surface layer only sees one neighboring layer
 – Introduce large error with less E-field sharing
• Note each layer is not the surface layer in both in-context dies
 – E.g., M3T is the surface layer in bottom die but not in top die
• Surface layer correction based on weighted average
 – Use a weighted average for caps on interface layers
 – Larger weight for layers farther from the surface

Wrong ×

Correct √

Bottom die

Top die
For each layer, we define:
- D: distance to the surface
- R: ratio between D values in the bottom and top in-context die

Example (two interface layers per die)
The surface correction weight of a capacitor is the product of R ratios of both layers it connects to, normalized to 100%:

- The R ratio of ground layer is defined as 1:1
- A ground cap on M4T: $R_{M4T} \times R_{gnd} = 1:2 \times 1:1 = 33\%$ (bot) : 67\% (top)
- A cap between M4T and M4B: $R_{M4T} \times R_{M4T} = 1:2 \times 2:1 = 50\%$ (bot) : 50\% (top)
Sample FFT Design in F2F

- A 64-point FFT with 38K gates and 330 F2F vias is implemented
Die-by-die vs. Holistic Extraction

- With a 1um F2F via height, die-by-die extraction underestimates coupling capacitance significantly
 - Especially for layers close to the other die

<table>
<thead>
<tr>
<th>Layer</th>
<th>M1B</th>
<th>M2B</th>
<th>M3B</th>
<th>M4B</th>
<th>M4T</th>
<th>M3T</th>
<th>M2T</th>
<th>M1T</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holi</td>
<td>26.2</td>
<td>949</td>
<td>1808</td>
<td>3703</td>
<td>3089</td>
<td>1755</td>
<td>1013</td>
<td>38.2</td>
<td>12381</td>
</tr>
<tr>
<td>D-D</td>
<td>20.1</td>
<td>856</td>
<td>1620</td>
<td>1955</td>
<td>1413</td>
<td>1399</td>
<td>747</td>
<td>21.2</td>
<td>8032</td>
</tr>
<tr>
<td>Err</td>
<td>-6.06</td>
<td>-93.4</td>
<td>-187</td>
<td>-1747</td>
<td>-1676</td>
<td>-356</td>
<td>-266</td>
<td>-17.0</td>
<td>-4349</td>
</tr>
<tr>
<td>Err%</td>
<td>-23%</td>
<td>-9.8%</td>
<td>-10%</td>
<td>-47%</td>
<td>-54%</td>
<td>-20%</td>
<td>-26%</td>
<td>-45%</td>
<td>-35%</td>
</tr>
</tbody>
</table>

Total coupling capacitance of each layer
• Inter-die coupling occupies a large portion of total coupling cap
 – Especially when dies are close and few metal layers are used

<table>
<thead>
<tr>
<th>Layer</th>
<th>M1B</th>
<th>M2B</th>
<th>M3B</th>
<th>M4B</th>
<th>M4T</th>
<th>M3T</th>
<th>M2T</th>
<th>M1T</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1B</td>
<td>5.76</td>
<td>3.03</td>
<td>17.1</td>
<td>0.13</td>
<td>0.03</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>M2B</td>
<td>3.03</td>
<td>381</td>
<td>147</td>
<td>396</td>
<td>18.6</td>
<td>0.69</td>
<td>2.58</td>
<td>0.01</td>
</tr>
<tr>
<td>M3B</td>
<td>17.1</td>
<td>147</td>
<td>1261</td>
<td>231</td>
<td>9.9</td>
<td>140</td>
<td>0.72</td>
<td>0.28</td>
</tr>
<tr>
<td>M4B</td>
<td>0.13</td>
<td>396</td>
<td>231</td>
<td>1826</td>
<td>1184</td>
<td>18.6</td>
<td>46.7</td>
<td>0.12</td>
</tr>
<tr>
<td>M4T</td>
<td>0.03</td>
<td>18.6</td>
<td>9.9</td>
<td>1184</td>
<td>1311</td>
<td>196</td>
<td>369</td>
<td>0.28</td>
</tr>
<tr>
<td>M3T</td>
<td>0.14</td>
<td>0.69</td>
<td>140</td>
<td>18.6</td>
<td>196</td>
<td>1226</td>
<td>148</td>
<td>25.3</td>
</tr>
<tr>
<td>M2T</td>
<td>0.00</td>
<td>2.58</td>
<td>0.72</td>
<td>46.7</td>
<td>369</td>
<td>148</td>
<td>442</td>
<td>4.63</td>
</tr>
<tr>
<td>M1T</td>
<td>0.00</td>
<td>0.01</td>
<td>0.28</td>
<td>0.12</td>
<td>0.28</td>
<td>25.3</td>
<td>4.63</td>
<td>7.54</td>
</tr>
</tbody>
</table>

Breakdown of holistic extraction
In-context vs. Holistic Extraction

- Our in-context extraction with double counting and surface layer corrections matches very well with holistic extraction
 - Using two interface layers from each die

<table>
<thead>
<tr>
<th>Layer</th>
<th>Ground capacitance</th>
<th>Coupling capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1B</td>
<td>M2B</td>
</tr>
<tr>
<td>Holi</td>
<td>1136</td>
<td>6588</td>
</tr>
<tr>
<td>In-C</td>
<td>1137</td>
<td>6583</td>
</tr>
<tr>
<td>Err</td>
<td>1.10</td>
<td>-4.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Coupling capacitance</th>
<th>Coupling capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1B</td>
<td>M2B</td>
</tr>
<tr>
<td>Holi</td>
<td>26.2</td>
<td>949</td>
</tr>
<tr>
<td>In-C</td>
<td>26.3</td>
<td>950</td>
</tr>
<tr>
<td>Err</td>
<td>0.15</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Interface Layer Impact

- More interface layers helps improve accuracy
 - With two interface layers per die gives a good tradeoff

<table>
<thead>
<tr>
<th>Layer</th>
<th>M1B</th>
<th>M2B</th>
<th>M3B</th>
<th>M4B</th>
<th>M4T</th>
<th>M3T</th>
<th>M2T</th>
<th>M1T</th>
<th>Total</th>
<th>Err%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holistic</td>
<td>26.2</td>
<td>949</td>
<td>1808</td>
<td>3703</td>
<td>3089</td>
<td>1755</td>
<td>1013</td>
<td>38.2</td>
<td>12381</td>
<td>-</td>
</tr>
<tr>
<td>In-C:1</td>
<td>26.1</td>
<td>953</td>
<td>1701</td>
<td>3708</td>
<td>2994</td>
<td>1604</td>
<td>994</td>
<td>37.8</td>
<td>12018</td>
<td>-2.93%</td>
</tr>
<tr>
<td>In-C:2</td>
<td>26.3</td>
<td>950</td>
<td>1803</td>
<td>3679</td>
<td>3058</td>
<td>1734</td>
<td>1001</td>
<td>38.0</td>
<td>12287</td>
<td>-0.76%</td>
</tr>
<tr>
<td>In-C:3</td>
<td>26.2</td>
<td>949</td>
<td>1794</td>
<td>3671</td>
<td>3057</td>
<td>1745</td>
<td>1012</td>
<td>38.2</td>
<td>12292</td>
<td>-0.72%</td>
</tr>
</tbody>
</table>

- Our weighted methods improves in-context extraction accuracy

<table>
<thead>
<tr>
<th>Layer</th>
<th>M3B</th>
<th>M4B</th>
<th>M4T</th>
<th>M3T</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holi</td>
<td>1808</td>
<td>3703</td>
<td>3089</td>
<td>1755</td>
<td>10354</td>
</tr>
<tr>
<td>Original</td>
<td>3069</td>
<td>6779</td>
<td>5781</td>
<td>3522</td>
<td>19151</td>
</tr>
<tr>
<td>Halved</td>
<td>1618</td>
<td>3611</td>
<td>3082</td>
<td>1849</td>
<td>10159</td>
</tr>
<tr>
<td>Weighted</td>
<td>1803</td>
<td>3679</td>
<td>3058</td>
<td>1734</td>
<td>10272</td>
</tr>
</tbody>
</table>
In-context extraction captures inter-die aggressors, provides better accuracy in full-chip analysis

- Especially for 3D nets which communicates across dies
Full-chip Analysis Results

- Full-chip analysis also shows non-negligible impact from inter-die capacitance, especially on noise results and 3D nets
 - Die-by-die extraction underestimates delay, power and noise
 - In-context extraction gives much more accurate results

<table>
<thead>
<tr>
<th>Primetime measurement</th>
<th>Holi</th>
<th>D-D</th>
<th>Err%</th>
<th>In-C</th>
<th>Err%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longest path delay (ns)</td>
<td>3.90</td>
<td>3.66</td>
<td>-6.2%</td>
<td>3.81</td>
<td>-2.3%</td>
</tr>
<tr>
<td>3D nets switching power (mW)</td>
<td>1.05</td>
<td>1.01</td>
<td>-3.5%</td>
<td>1.04</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Total switching power (mW)</td>
<td>12.1</td>
<td>11.9</td>
<td>-1.7%</td>
<td>12.0</td>
<td>-0.8%</td>
</tr>
<tr>
<td>Total coupling cap on 3D nets (fF)</td>
<td>4.37</td>
<td>2.96</td>
<td>-32%</td>
<td>4.19</td>
<td>-4.1%</td>
</tr>
<tr>
<td>Total wire cap on 3D nets (fF)</td>
<td>10.8</td>
<td>9.35</td>
<td>-13%</td>
<td>10.6</td>
<td>-1.8%</td>
</tr>
<tr>
<td>Avg aggressor # on 3D nets</td>
<td>285</td>
<td>200</td>
<td>-30%</td>
<td>277</td>
<td>-2.8%</td>
</tr>
<tr>
<td>Max noise on 3D nets (mV)</td>
<td>41.3</td>
<td>30.40</td>
<td>-26%</td>
<td>38.8</td>
<td>-6.1%</td>
</tr>
</tbody>
</table>
• We studied impacts of E-field sharing in F2F structure
• We showed inter-die coupling cannot be ignored in F2F-bonded 3D ICs, especially with few metal layers and close die-to-die distance
• We implemented and compared three extraction methods with full-chip analysis results
 – Die-by-die extraction underestimates total coupling capacitance
 – Holistic extraction is able to capture all inter-die coupling at the cost of high complexity
 – Our first-of-its-kind in-context extraction is highly accurate, and captures most E-field interactions across dies