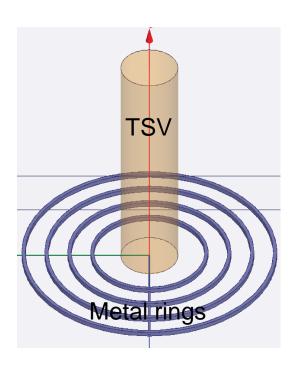


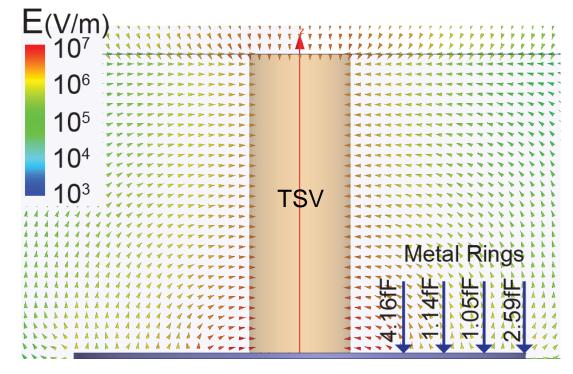

Fast and Accurate Full-chip Extraction and Optimization of TSV-to-Wire Coupling

Yarui Peng¹, Dusan Petranovic² and Sung Kyu Lim¹ ¹Georgia Institute of Technology, Atlanta, GA ²Mentor Graphics, Fremont, CA

Introduction

- 3D IC: a solution to alleviate interconnect delay and power ۲
- **New parasitics exist in 3D IC** ۲
 - TSV-to-TSV, TSV-to-wire coupling, µbump parasitics etc.
 - Need 3D interconnection extraction tool for TSV-to-wire coupling
 - Affect performance, power, noise[1]

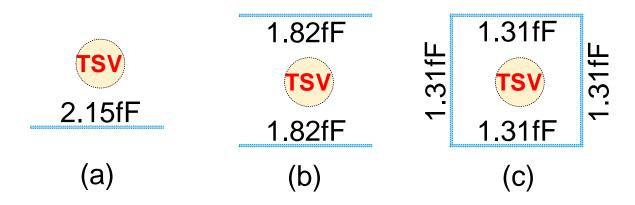



SEM of a via-last die-stacking technology[2]

[1] C. Liu et al., "Full-chip TSV-to-TSV coupling analysis and optimization in 3D IC," DAC11 [2] Aoki, M. et al, "Fabricating 3D integrated CMOS devices by using wafer stacking and via-last TSV technologies, IEDM13

Multiple Wire Effect

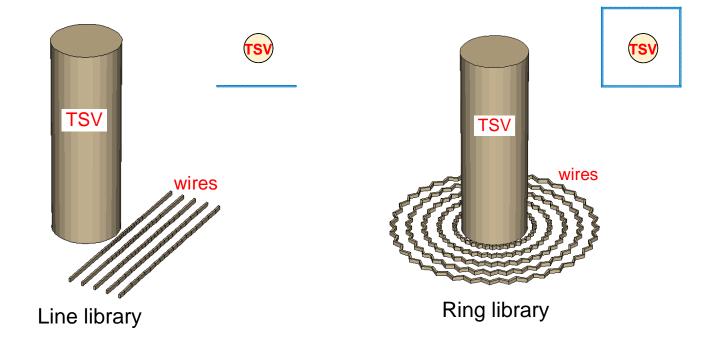
- A TSV structure with 4 wire rings are simulated in HFSS
- Much smaller coupling cap to TSV on Middle rings



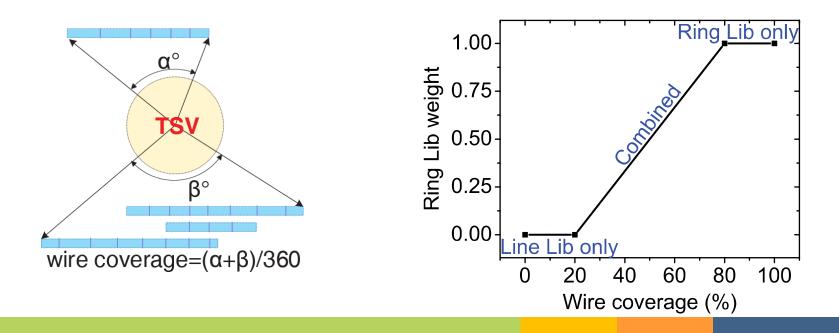
TSV-ring structure

E-field distribution and extracted capacitance

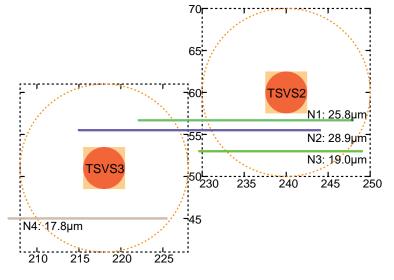
Wire Coverage Effect


- More wire covering leads to heavier E-field sharing around TSV
 - Reduces the coupling capacitance per each wire surrounding TSV
 - The total coupling capacitance to TSV still increases

Three case studies of wire coverage effect


TSV-to-wire Libraries Generation

- Two libraries are built to handle E-field sharing effects:
 - Line library: used for cases when wire coverage is low
 - Ring library: used for cases when wire coverage is high


Pattern Matching Algorithm

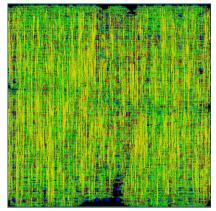
- Extract TSV-to-wire capacitance on the nearest metal layers
- Divide wire into segments
 - finer grid sizes are given to near-TSV region
- Segment capacitances extraction based on wire coverage and neighbor segments

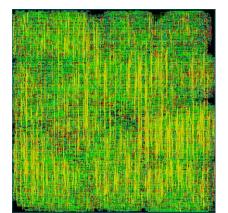
Validation with Sample Layout

• We validate the extraction result against Synopsys Raphael on a sample layout from a 3D design

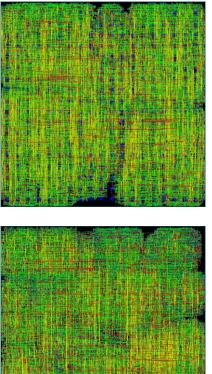
TSV	Wire	Raphael	Our method		
130			Ring lib	Combined	Line lib
S2	N1	1.76	1.49	1.93	2.07
S2	N2	0.76	0.68	0.76	0.78
S2	N3	0.81	0.86	0.81	0.79
S3	N1	0.31	0.29	0.31	0.34
S3	N2	1.38	1.28	1.33	1.37
S3	N4	1.62	1.49	1.53	1.57

Sample Layout

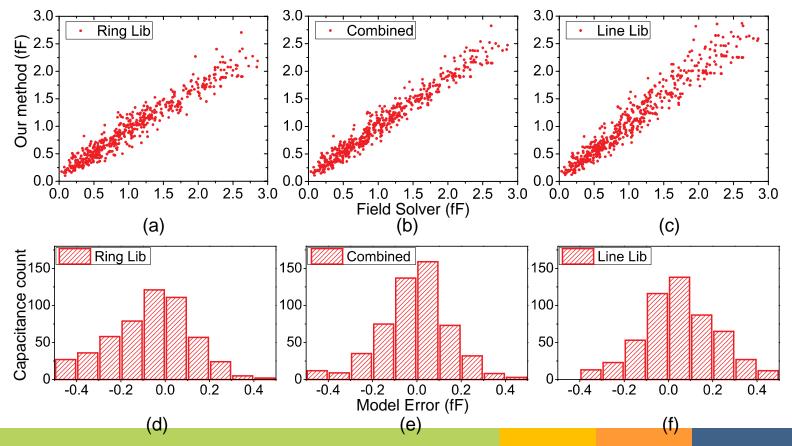

Extraction results


3D IC Design

- 64-point FFT, 47K gates
- 330 TSVs: 2µm radius, 5um landing pad width, 0.5µm KOZ


Placement Die bot 80um 380um Die top

Routing (up to M4)



Routing (up to M5)

Validation with Full-chip Layout

 A 2-die FFT64 design (380µm×380µm, 330 TSVs) is used for extraction validation, and the results show that combining both line and ring library is fast and highly accurate

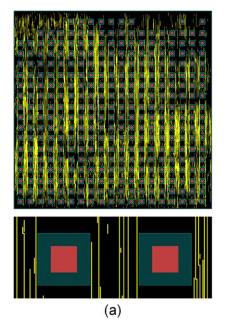
Validation on Full-chip Layout (cont.)

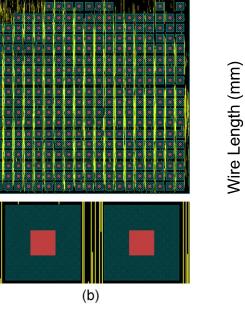
10/16

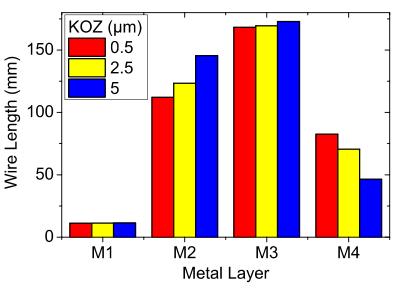
- Highly fast and accurate on the full-chip level
 - Error is computed against the field solver

	Field solver	Ring lib	Combined	Line lib
Total cap (fF)	590	538	579	618
Total cap error	-	-8.3%	-1.9%	+5.3%
Correlation coefficient	-	0.971	0.981	0.966
Average error (fF)	-	0.171	0.112	0.163
	Field solver	Line lib	Corner lib	Ring lib
Library generation time	-	8h	9h	18h
Runtime	7.5h	5.8s		
Memory space	>500MB	20MB		

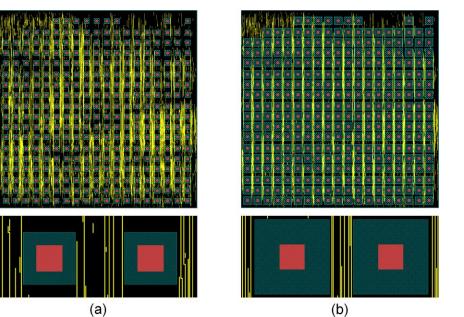
Full-chip TSV-to-wire Impact


- Multi-TSV models are built for TSV-to-TSV coupling[1]
- STA and statistical power calculation: Primetime
- Worst-case total TSV noise calculation: HSPICE


With TSV-to-wire cap?	No	Yes	
Total TSV MOS cap (pF)	4.47		
Total TSV-to-TSV coupling cap (pF)	0.74		
Total TSV-to-wire coupling cap (pF)	2.01		
Longest path delay (ns)	4.48	5.08 (+13.4%)	
Total TSV net power (mW)	0.303	0.356 (+17.6%)	
Total net switching power (mW)	2.42	2.50 (+3.3%)	
Total power (mW)	22.9	23.0 (+0.43%)	
Total worst-case TSV noise (V)	32.5	78.2 (+104%)	


Increasing Routing KOZ

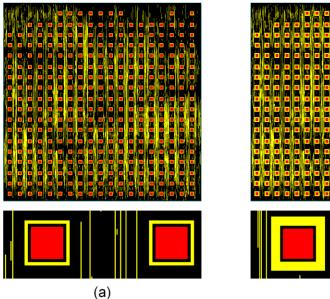
- Increase minimum distance allowed for the nearest wire
 - Decrease the number of coupling wires
 - Increase routing congestion on other layers
 - No silicon area overhead
 - 2.5µm KOZ

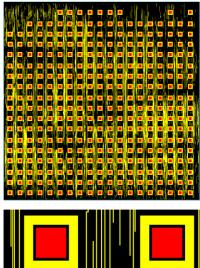


Increasing Routing KOZ (cont.)

Routing KOZ size (µm)	0	2.5	5
Longest path delay (ns)	5.08	4.95 (-2.6%)	4.77 (-6.1%)
Total TSV net power (mW)	0.356	0.342 (-3.9%)	0.327 (-8.1%)
Total net switching power (mW)	2.50	2.47 (-1.2%)	2.45 (-2.0%)
Total noise on TSV net (V)	78.2	67.0 (-14.3%)	42.9 (-45.1%)
		_	

2.5µm KOZ


5µm KOZ


Guard Ring protection

Guard ring width (µm)	0	0.5	1.5
Longest path delay (ns)	4.95	4.98 (+0.6%)	5.01 (+1.2%)
Total TSV net power (mW)	0.342	0.351 (+2.6%)	0.358 (+4.7%)
Total net switching power (mW)	2.47	2.475 (+0.2%)	2.479 (+0.4%)
Total noise on TSV net (V)	67.0	58.0 (-13.4%)	53.6 (-20.0%)

0.5µm guard ring

1.5µm guard ring

(b)

Tech Transfer

.

- This work is a collaboration with Mentor Graphics
- The project is extended and planned for further technology transfer and we have regular meeting with Mentor Graphics
- This work is first published in DAC14, San Francisco
- It is demonstrated to Mentor, Cadence, Synopsys during company visits

15/16

Conclusion

- E-field sharing effects need to be considered for accurate TSV-towire extraction
- TSV-to-wire coupling has non-negligible impact in full-chip timing, power and TSV noise
- Increasing routing KOZ and using wire guard ring can reduce TSVto-wire coupling effectively

17/16

Thank you!