CSCE/ELEG 4914: Advanced Digital Design

Power and Energy

Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU
The Chip is HOT

- Power consumption increases with the transistor count

Graph showing the increase in power density (W/cm²) over time (Year) from 1970 to 2010. Key points include:
 - Sun’s Surface
 - Rocket Nozzle
 - Nuclear Reactor
 - Hot Plate
 - 8008, 8080, 8085, 286, 386, 486, P6 Pentium® proc

Legend:
- 4004
- 8086
Power and Energy

- Power is drawn from a voltage source attached to the \(V_{DD} \) pin(s) of a chip.

- Instantaneous Power: \(P(t) = I(t)V(t) \)

- Energy: \(E = \int_{0}^{T} P(t)dt \)

- Average Power: \(P_{avg} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} P(t)dt \)

A typical power breakdown

- Cores: 32%
- Memory: 20%
- I/O: 13%
- Leakage: 21%
- Other: 14%
Power in Circuit Elements

- **Voltage/Current Source:**
 - Power consumption:
 \[P_{VDD}(t) = I_{DD}(t) V_{DD} \]

- **Resistor:**
 - Heat dissipation:
 \[P_R(t) = \frac{V_R^2(t)}{R} = I_R^2(t) R \]

- **Capacitor:**
 - Energy Stored:
 \[E_C = \int_0^\infty I(t) V(t) \, dt = \int_0^\infty C \frac{dV}{dt} V(t) \, dt \]
 \[= C \int_0^{V_C} V(t) \, dV = \frac{1}{2} CV_C^2 \]
When the gate output rises

- Energy stored in capacitor is \(E_C = \frac{1}{2} C_L V_{DD}^2 \)
- But energy drawn from the supply is
 \[
 E_{VDD} = \int_0^\infty I(t) V_{DD} \, dt = \int_0^\infty C_L \frac{dV}{dt} V_{DD} \, dt
 \]
 \[
 = C_L V_{DD} \int_0^{V_{DD}} dV = C_L V_{DD}^2
 \]
- Half the energy from VDD is **dissipated** in the pMOS transistor as heat, other half **stored** in capacitor

When the gate output falls

- Energy in capacitor is dumped to GND
- Dissipated as heat in the nMOS transistor
Example: $V_{DD} = 1.0 \text{ V, } C_L = 150 \text{ fF, } f = 1 \text{ GHz}$
Switch power calculation:

\[
P_{\text{switching}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt
\]

\[
= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt
\]

\[
= \frac{V_{DD}}{T} [T f_{sw} C V_{DD}]
\]

\[
= C V_{DD}^2 f_{sw}
\]
Suppose the system clock frequency = f

Let $f_{sw} = \alpha f$, where $\alpha = \text{activity factor}$

- If the signal is a clock, $\alpha = 1$
- If the signal switches once per cycle, $\alpha = \frac{1}{2}$

Dynamic power:

$$P_{\text{switching}} = \alpha CV_{DD}^2 f$$

For dynamic power reduction, try to minimize:

- Activity factor
- Capacitance
- Supply voltage
- Frequency
When transistors switch, both nMOS and pMOS networks may be momentarily ON simultaneously.

Leads to a blip of “short circuit” current.

< 10% of dynamic power if rise/fall times are comparable for input and output.

We will generally ignore this component.
Power Dissipation Sources

- **Total power**: \(P_{\text{total}} = P_{\text{dynamic}} + P_{\text{static}} \)

- **Dynamic power**: \(P_{\text{dynamic}} = P_{\text{switching}} + P_{\text{shortcircuit}} \)
 - Switching load capacitances
 - Short-circuit current

- **Static power**: \(P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}} \)
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current
Dynamic Power Example

- 1 billion transistor chip
 - 50M logic transistors
 - Average width: 12 \(\lambda \), Activity factor = 0.1
 - 950M memory transistors
 - Average width: 4 \(\lambda \), Activity factor = 0.02
 - 1.0 V 65 nm process
 - \(C = 1 \, \text{fF/\(\mu \text{m} \)} \) (gate) + 0.8 \(\text{fF/\(\mu \text{m} \)} \) (diffusion)

- Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

\[
C_{\text{logic}} = \left(50 \times 10^6 \right) (12 \lambda) (0.025 \mu m / \lambda) (1.8 \text{fF/\(\mu \text{m} \)}) = 27 \text{ nF}
\]

\[
C_{\text{mem}} = \left(950 \times 10^6 \right) (4 \lambda) (0.025 \mu m / \lambda) (1.8 \text{fF/\(\mu \text{m} \)}) = 171 \text{ nF}
\]

\[
P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.02C_{\text{mem}} \right] (1.0)^2 (1.0 \text{ GHz}) = 6.1 \text{ W}
\]
Let $P_i = \text{Prob}(\text{node i} = 1)\n\begin{align*}
\alpha_i &= P_i \cdot \overline{P_i} \\
\text{Completely random data has} \ P &= 0.5 \ \text{and} \ \alpha = 0.25
\end{align*}$

Data is often not completely random

- e.g. upper bits of 64-bit words representing bank account balances are usually 0

Data propagating through ANDs and ORs has lower activity factor

- Depends on design, but typically $\alpha \approx 0.1$
Activity of logic functions

<table>
<thead>
<tr>
<th>Gate</th>
<th>P_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND2</td>
<td>$P_A P_B$</td>
</tr>
<tr>
<td>AND3</td>
<td>$P_A P_B P_C$</td>
</tr>
<tr>
<td>OR2</td>
<td>$1 - \overline{P_A} \overline{P_B}$</td>
</tr>
<tr>
<td>NAND2</td>
<td>$1 - P_A P_B$</td>
</tr>
<tr>
<td>NOR2</td>
<td>$\overline{P_A} \overline{P_B}$</td>
</tr>
<tr>
<td>XOR2</td>
<td>$P_A \overline{P_B} + \overline{P_A} P_B$</td>
</tr>
</tbody>
</table>
Example

- A 4-input AND is built out of two levels of gates
- Estimate the activity factor at each node if the inputs have $P = 0.5$
The best way to reduce the activity is to turn off the clock to registers in unused blocks

- Saves clock activity ($\alpha = 1$)
- Eliminates all switching activity in the block
- Requires determining if block will be used
Capacitance

- **Gate capacitance**
 - Fewer stages of logic
 - Small gate sizes

- **Wire capacitance**
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates
• Run each block at the lowest possible voltage and frequency that meets performance requirements

• Voltage Domains
 ● Provide separate supplies to different blocks
 ● Level converters required when crossing from low to high V_{DD} domains

• Dynamic Voltage Scaling
 ● Adjust V_{DD} and f according to workload

Level shifter

Switching Voltage Regulator

Core Logic

DVS Controller

Voltage Control

Freq Control

Workload

Temperature
Static Power

- **Static power is consumed even when chip is quiescent.**
 - Leakage draws power from nominally OFF devices
 - Ratioed circuits burn power in fight between ON transistors

- **Example: Revisit power estimation for 1 billion transistor chip**

- **Estimate static power consumption**
 - **Subthreshold leakage**
 - Normal V_t: 100 nA/μm
 - High V_t: 10 nA/μm
 - High V_t used in all memories and in 95% of logic gates
 - **Gate leakage** 5 nA/μm
 - **Junction leakage** negligible
\[W_{\text{normal-V}_t} = \left(50 \times 10^6 \right) (12 \lambda)(0.025 \mu m / \lambda)(0.05) = 0.75 \times 10^6 \mu m \]

\[W_{\text{high-V}_t} = \left[\left(50 \times 10^6 \right)(12 \lambda)(0.95) + \left(950 \times 10^6 \right)(4 \lambda) \right](0.025 \mu m / \lambda) = 109.25 \times 10^6 \mu m \]

\[I_{\text{sub}} = \left[W_{\text{normal-V}_t} \times 100 \text{ nA/} \mu m + W_{\text{high-V}_t} \times 10 \text{ nA/} \mu m \right] / 2 = 584 \text{ mA} \]

\[I_{\text{gate}} = \left[\left(W_{\text{normal-V}_t} + W_{\text{high-V}_t} \right) \times 5 \text{ nA/} \mu m \right] / 2 = 275 \text{ mA} \]

\[P_{\text{static}} = (584 \text{ mA} + 275 \text{ mA})(1.0 \text{ V}) = 859 \text{ mW} \]
Subthreshold Leakage

For $V_{ds} > 50$ mV

$$I_{sub} \approx I_{off} \frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_y V_{sb}}{S}$$

Ioff = leakage at $V_{gs} = 0$, $V_{ds} = V_{DD}$

- Typical values in 65 nm
 - $I_{off} = 100$ nA/mm @ $V_t = 0.3$ V
 - $I_{off} = 10$ nA/mm @ $V_t = 0.4$ V
 - $I_{off} = 1$ nA/mm @ $V_t = 0.5$ V
 - $h = 0.1$
 - $k_g = 0.1$
 - $S = 100$ mV/decade
Stack Effect

Series OFF transistors have less leakage

- $V_x > 0$, so N2 has negative V_{gs}

\[I_{sub} = I_{off} \frac{\eta(V_x - V_{DD})}{S} = I_{off} \frac{-V_x + \eta(V_{DD} - V_x - V_{DD}) - \kappa \gamma V_x}{S} \]

\[V_x = \frac{\eta V_{DD}}{1 + 2 \eta + \kappa \gamma} \]

\[I_{sub} = I_{off} \frac{-\eta V_{DD}}{S} \approx I_{off} \frac{-\eta V_{DD}}{S} \]

- Leakage through 2-stack reduces $\sim 10x$
- Leakage through 3-stack reduces further
Leakage Control

- Leakage and delay trade off
 - Aim for low leakage in sleep and low delay in active mode

- To reduce leakage:
 - Increase V_t: *multiple* V_t
 - Use low V_t only in critical circuits ($V_{TL}/V_{TG}/V_{TH}$ in FreePDK45)
 - Increase V_s: *stack effect*
 - *Input vector control* in sleep
 - Decrease V_b
 - *Reverse body bias* in sleep (increase V_t)
 - Or *forward body bias* in active mode (reduce V_t)
Gate Leakage

- Extremely strong function of t_{ox} and V_{gs}
 - Negligible for older processes
 - Approaches subthreshold leakage at 65 nm and below in some processes

- An order of magnitude less for pMOS than nMOS

- Control leakage in the process using $t_{ox} > 10.5$ Å
 - High-k gate dielectrics help
 - Some processes provide multiple t_{ox}
 - e.g. thicker oxide for 3.3 V I/O transistors

- Control leakage in circuits by limiting V_{DD}
NAND3 Leakage Example

- 100 nm process
 - $I_{gn} = 6.3 \text{ nA}$
 - $I_{gp} = 0$
 - $I_{offn} = 5.63 \text{ nA}$
 - $I_{offp} = 9.3 \text{ nA}$

<table>
<thead>
<tr>
<th>Input State (ABC)</th>
<th>I_{sub}</th>
<th>I_{gate}</th>
<th>I_{total}</th>
<th>V_x</th>
<th>V_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0.4</td>
<td>0</td>
<td>0.4</td>
<td>stack effect</td>
<td>stack effect</td>
</tr>
<tr>
<td>001</td>
<td>0.7</td>
<td>0</td>
<td>0.7</td>
<td>stack effect</td>
<td>$V_{DD} - V_t$</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>intermediate</td>
<td>intermediate</td>
</tr>
<tr>
<td>011</td>
<td>3.8</td>
<td>0</td>
<td>10.1</td>
<td>$V_{DD} - V_t$</td>
<td>$V_{DD} - V_t$</td>
</tr>
<tr>
<td>100</td>
<td>0.7</td>
<td>6.3</td>
<td>7.0</td>
<td>0</td>
<td>stack effect</td>
</tr>
<tr>
<td>101</td>
<td>3.8</td>
<td>6.3</td>
<td>10.1</td>
<td>0</td>
<td>$V_{DD} - V_t$</td>
</tr>
<tr>
<td>110</td>
<td>5.6</td>
<td>12.6</td>
<td>18.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>28</td>
<td>18.9</td>
<td>46.9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Junction Leakage

- From reverse-biased p-n junctions
 - Between diffusion and substrate or well

- Ordinary diode leakage is negligible

- Band-to-band tunneling (BTBT) can be significant
 - Especially in high-V_t transistors where other leakage is small
 - Worst at $V_{db} = V_{DD}$

- Gate-induced drain leakage (GIDL) exacerbates
 - Worst for $V_{gd} = -V_{DD}$ (or more negative)
Turning OFF power to blocks when they are idle to save leakage:

- Use virtual VDD (VDDV)
- Gate outputs to prevent invalid logic levels to next block

Voltage drop across sleep transistor degrades performance during normal operation:

- Size the transistor wide enough to minimize impact

Switching wide sleep transistor costs dynamic power:

- Only justified when circuit sleeps long enough